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ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.
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(a) Training and test error on ResNet18 [1]

A

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x )=

N∑
k=1

akφ(x ; vk ) where φ(x ; v):=e
√
−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

(b) Double descent [2] (Belkin, Hsu, Ma, Mandal, 2019).

Observations: beyond bias-variance trade-off
I 1) Peak at the interpolation thresholds
I 2) Monotonic decreasing in the overparameterized regime
I 3) Global minimum when #parameters is infinite
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Background: Two-layer neural networks
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methods
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features

neural
networks
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[x]d
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ϕ1
W1,1

ϕ2

W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

fm(x; θ) =
m∑

i=1

aiφ(x,wi), θ := {(ai,wi)}m
i=1

I φ : X × W → R, e.g., ReLU: φ(x,w) = max(〈x,w〉, 0)

I Random features models (RFMs) [3]:
◦ {wi}m

i=1
iid∼ µ for a given µ ∈ P(W)

◦ only train the second layer
random features mapping:
ϕ(x) := 1√

m
σ

(
Wx√

d

)
Wij ∼ N (0, 1)
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Recall RFMs in high-dimensional asymptotic setting (Mei and Montanari, 2022)
◦ high dimensional: n,m, d → ∞, m/d → ψ1 and n/d → ψ2 as d → ∞ with ψ1, ψ2 ∈ (0,∞)

◦ random feature regression with âλ = arg mina Êλ(a)

Êλ(a) =
1
n

n∑
i=1

[
yi −

1
m

m∑
j=1

ajσ(〈xi,wj〉)

]2

+
λm

d
‖a‖2

2

E(a, fρ) = Ex,y

[
fρ(x) −

1
m

m∑
j=1

ajσ(〈xi,wj〉)

]2

Theorem ([4] Mei and Montanari, 2022)
data {xi}n

i=1 ∼ Unif(Sd−1(
√
d)), label noise E(ε2) = τ2, target function fρ(x) = 〈β, x〉, random features

{wj}m
j=1

iid∼ Unif(Sd−1) for G ∼ N (0, 1), define µ1 = E(σ(G)G), µ2
∗ = E[σ(G)2] − (E[σ(G)])2 − (E[σ(G)G])2,

ζ = µ1/µ∗, for any λ > 0, we have

E (̂aλ, fρ) = ‖β‖2
2B(ζ, ψ1, ψ2, λ/µ

2
∗) + τ2V(ζ, ψ1, ψ2, λ/µ

2
∗) + od,P(1) .

observations 1), 2), 3) for double descent can be theoretically proved.
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Questions on high dimensional kernel methods

high dimensional kernel methods: can only learn linear function! [5] (Ghorbani, Mei, Misiakiewicz,
Montanari, 2021)

◦ asymptotic expansion under high dimensions [6] (El Karoui, 2010)
under the setting of n, d → ∞, n/d → ψ1 as d → ∞ with ψ1 ∈ (0,∞), we have

‖K − (aXX> + bI)‖2
P→ 0 when d → 0 for some parameters a, b

◦ ‖f∗‖H < ∞ ?

Example (a linear function f : Sd → R such that f(x) = v>x for a certain v ∈ Sd)
I zero-order arc-cosine kernel k(x, x′) =

∫
Sd 1{ω> x≥0}1{ω> x′≥0}dµ(ω)

⇒ ‖f‖H = 2dπ
d−1π < 4π [7] (Bach 2017)

I first-order arc-cosine kernel, we have ‖f‖H � C
√
d for some constant C independent of d.
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‖K − (aXX> + bI)‖2
P→ 0 when d → 0 for some parameters a, b

◦ ‖f∗‖H < ∞ ?

Example (a linear function f : Sd → R such that f(x) = v>x for a certain v ∈ Sd)
I zero-order arc-cosine kernel k(x, x′) =

∫
Sd 1{ω> x≥0}1{ω> x′≥0}dµ(ω)

⇒ ‖f‖H = 2dπ
d−1π < 4π [7] (Bach 2017)

I first-order arc-cosine kernel, we have ‖f‖H � C
√
d for some constant C independent of d.
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Motivation

I high dimension vs. fixed dimension
I from asymptotic to non-asymptotic
I two-layer neural networks trained by SGD

◦ Analysis
I SGD: implicit regularization → without λ
I dimension-free SGD bound
I multiple randomness sources

- data sampling, label noise, Gaussian initialization, stochastic gradients

observations 1), 2), 3) can be still proved!
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Problem settings: function space

[x]1

[x]2

[x]d

...

ϕ1
W1,1

ϕ2

W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

random features mapping:
ϕ(x) := 1√

m
σ

(
Wx√

d

)
Wij ∼ N (0, 1)

function space

H :=
{
f ∈ L2

ρX

∣∣∣ f(x) = 〈a, ϕ(x)〉
}
, Wij ∼ N (0, 1)

covariance operator: Σm := Ex[ϕ(x) ⊗ ϕ(x)]
expected covariance operator: Σ̃m := Ex,W [ϕ(x) ⊗ ϕ(x)]
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Problem settings: RFMs with the squared loss by SGD

Online SGD: one-pass, average output, adaptive step-size...

at = at−1 + γt[yt − 〈at−1, ϕ(xt)〉]ϕ(xt), t = 1, 2, . . . n .

I averaged output: ān := 1
n

∑n−1
t=0 at =⇒ f̄n = 〈ϕ(·), ān〉

I adaptive step-size: γt := γ0t−ζ , ζ ∈ [0, 1)

Averaged expected risk
I optimal solution: f∗ = arg minf∈H ‖f − fρ‖2

L2
ρX

with ‖f∗‖H < ∞

I averaged excess risk: E‖f̄n − f∗‖2
L2

ρX

= EX,W,ε〈f̄n − f∗,Σm(f̄n − f∗)〉
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Assumptions

Assumption (Basic assumptions)
I non-asymptotic: ‖x‖2

2 ≤ O(d), Σd := Ex[x ⊗ x] with ‖Σd‖2 < ∞
I boundedness of f∗: ‖f∗‖H < ∞
I activation function: σ(·): Lipschitz continuous
I label noise: E(ε) = 0 and E(ε2) = τ2

Assumption (Fourth moment condition)
for any PSD operator A, we assume

EW [ΣmAΣm] 4 r′EW [Tr(ΣmA)Σm] 4 rTr(Σ̃mA)Σ̃m .

Remark:
I the special case A := I can be proved.
I holds for sub-Gaussian data.
I widely used in SGD analysis [8, 9, 10]
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Main results: bias-variance decomposition

Define ηt := ft − f∗, we have

ηt = [I − γtϕ(xt) ⊗ ϕ(xt)](ft−1 − f∗) + γtεtϕ(xt) ,

ηbias
t = [I − γtϕ(xt) ⊗ ϕ(xt)]ηbias

t−1 , ηbias
0 = f∗ ,

ηvar
t = [I − γtϕ(xt) ⊗ ϕ(xt)]ηvar

t−1 + γtεtϕ(xt), ηvar
0 = 0 .

Theorem (Bias-variance decomposition)
Under the above-mentioned assumptions, if the step-size γt := γ0t−ζ with ζ ∈ [0, 1) satisfies γ0 < C, we have

E‖f̄n − f∗‖2
L2

ρX

= EX,W〈η̄bias
n ,Σmη̄

bias
n 〉︸                          ︷︷                          ︸

:=Bias

+EX,W,ε〈η̄var
n ,Σmη̄

var
n 〉︸                          ︷︷                          ︸

:=Variance

.
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Main theorem

Theorem (Liu, Suykens, Volkan, 2022)
Under the above-mentioned assumptions, if the step-size γt := γ0t−ζ with ζ ∈ [0, 1) satisfies γ0 < C, we have

Bias . γ0r
′nζ−1‖f∗‖2 ∼ O

(
nζ−1

)
.

Variance . γ0r
′τ2

{
mnζ−1, if m 6 n
1 + nζ−1 +

n

m
, if m > n

(c) bias (d) variance (e) excess risk
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Discussion

Constant step-size SGD doesn’t hurt the convergence rate.

I under-parameterized regime (by taking m = O(
√
n))

E‖f̄n − f∗‖2
L2

ρX

= Bias︸︷︷︸
O( 1

n
)

+ Variance︸       ︷︷       ︸
O( 1√

n
)

≤ O
( 1

√
n

)
,

matches [11] (Carratino, Rudi, Rosasco, 2018) under one-pass, one-batch, SGD...1

I over-parameterized regime: matches [12] (Belkin, Hsu, Xu, 2020)
◦ no lower bound: Bias 6 3(B1 + B2 + B3) based on Minkowski inequality

1but the selection on step-size is different
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Proof framework: randomness decouplingOn the Double Descent of Random Features Models Trained with SGD

excess risk EX,W ,ε〈η̄n,Σmη̄n〉

Bias EX,W 〈η̄biasn ,Σmη̄
bias
n 〉

B3: η̄bXWn
O(nζ−1)

B2: η̄bXn − η̄bXWn{
O(n2(ζ−1)m)

O( 1
m

)

B1: η̄biasn − η̄bXn
O(nζ−1)

Variance EX,W ,ε〈η̄varn ,Σmη̄
var
n 〉

V3: η̄vXWn{
O(nζ−1m)

O(nζ−1 + n
m

)

V2: η̄vXn − η̄vXWn{
O(nζ−1m)

O(1)

V1: η̄varn − η̄vXn{
O(nζ−1m) if m 6 n

O(1) if m > n

Figure 1. The roadmap of proofs.

4. Proof Outline and Discussion
In this section, we first introduce the structure of the proofs
with high level ideas, and then discuss our work with pre-
vious literature in terms of the used techniques and the
obtained results.

4.1. Proof outline

We (partly) disentangle the multiple randomness sources
on the dataX , the random features matrixW , the noise ε,
make full use of statistical properties of covariance operators
Σm and Σ̃m in Section 3.2, and provide the respective (bias
and variance) upper bounds in terms of multiple randomness
sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations.
Recall Σm = Ex[ϕ(x)⊗ ϕ(x)] and Σ̃m = Ex,W [ϕ(x)⊗
ϕ(x)], define

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗ , (8)

ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗ , (9)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄

bX
t and η̄bXWn :=

1
n

∑n−1
t=0 η̄

bXW
t . Accordingly, ηbXt can be regarded as a "de-

terministic" version of ηbiast : we omit the randomness
on X (data sampling, stochastic gradients) by replacing
[ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηbXWt is a
deterministic version of ηvXt by replacing Σm with its expec-
tation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Bias can be
decomposed as Bias . B1 + B2 + B3, where
B1 := EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]
and

B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 :=

〈η̄bXWn , Σ̃mη̄
bXW
n 〉. Here B3 is a deterministic quantity that

is closely connected to model (intrinsic) bias without any
randomness; while B1 and B2 evaluate the effect of random-
ness from X and W on the bias, respectively. The error
bounds (convergence rates) for them can be directly found
in Figure 1.

To bound B3, we directly focus on its formulation by virtue
of spectrum decomposition and integral estimation. To

bound B2, we have B2 = 1
n2EW

∥∥∥Σ
1
2
m
∑n−1
t=0 (ηbXt −ηbXWt )

∥∥∥2

,

where the key part ηbXt − ηbXWt can be estimated by Lemma 6.
To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 .∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1. The first term can be

upper bounded by
∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 .

Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary
notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0 , (10)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0 , (11)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn :=

1
n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a "semi-

stochastic" version of ηvart : we keep the randomness due to
the noise εt but omit the randomness onX (data sampling)
by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Like-
wise, ηvXWt can be regarded as a "semi-stochastic" version of
ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Variance can
be decomposed as Variance . V1 + V2 + V3,
where V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
,

V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact

the multiple randomness, V1 disentangles some random-
ness on data sampling, V2 discards some randomness on
initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

Bias : ηbias
t = [I − γtϕ(xt) ⊗ ϕ(xt)]ηbias

t−1

Define ”semi-stochastic” version: ηbX
t = (I − γtΣm)ηbX

t−1, ηbXW
t = (I − γtΣ̃m)ηbXW

t−1,

I B1 := EX,W
[
〈η̄bias

n − η̄bX
n ,Σm(η̄bias

n − η̄bX
n )〉

]
I B2 := EW

[
〈η̄bX

n −η̄bXW
n ,Σm(η̄bX

n −η̄bXW
n )〉

]
I B3 := 〈η̄bXW

n , Σ̃mη̄bXW
n 〉
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Proof framework: randomness decouplingOn the Double Descent of Random Features Models Trained with SGD
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[ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηbXWt is a
deterministic version of ηvXt by replacing Σm with its expec-
tation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Bias can be
decomposed as Bias . B1 + B2 + B3, where
B1 := EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]
and

B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 :=

〈η̄bXWn , Σ̃mη̄
bXW
n 〉. Here B3 is a deterministic quantity that

is closely connected to model (intrinsic) bias without any
randomness; while B1 and B2 evaluate the effect of random-
ness from X and W on the bias, respectively. The error
bounds (convergence rates) for them can be directly found
in Figure 1.

To bound B3, we directly focus on its formulation by virtue
of spectrum decomposition and integral estimation. To

bound B2, we have B2 = 1
n2EW

∥∥∥Σ
1
2
m
∑n−1
t=0 (ηbXt −ηbXWt )

∥∥∥2

,

where the key part ηbXt − ηbXWt can be estimated by Lemma 6.
To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 .∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1. The first term can be

upper bounded by
∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 .

Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary
notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0 , (10)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0 , (11)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn :=

1
n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a "semi-

stochastic" version of ηvart : we keep the randomness due to
the noise εt but omit the randomness onX (data sampling)
by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Like-
wise, ηvXWt can be regarded as a "semi-stochastic" version of
ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Variance can
be decomposed as Variance . V1 + V2 + V3,
where V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
,

V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact

the multiple randomness, V1 disentangles some random-
ness on data sampling, V2 discards some randomness on
initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

Bias : ηbias
t = [I − γtϕ(xt) ⊗ ϕ(xt)]ηbias

t−1

Define ”semi-stochastic” version: ηbX
t = (I − γtΣm)ηbX

t−1, ηbXW
t = (I − γtΣ̃m)ηbXW

t−1,

I B1 := EX,W
[
〈η̄bias

n − η̄bX
n ,Σm(η̄bias

n − η̄bX
n )〉

]
I B2 := EW

[
〈η̄bX

n −η̄bXW
n ,Σm(η̄bX

n −η̄bXW
n )〉

]
I B3 := 〈η̄bXW

n , Σ̃mη̄bXW
n 〉
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V1: η̄varn − η̄vXn{
O(nζ−1m) if m 6 n

O(1) if m > n

Figure 1. The roadmap of proofs.

4. Proof Outline and Discussion
In this section, we first introduce the structure of the proofs
with high level ideas, and then discuss our work with pre-
vious literature in terms of the used techniques and the
obtained results.

4.1. Proof outline

We (partly) disentangle the multiple randomness sources
on the dataX , the random features matrixW , the noise ε,
make full use of statistical properties of covariance operators
Σm and Σ̃m in Section 3.2, and provide the respective (bias
and variance) upper bounds in terms of multiple randomness
sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations.
Recall Σm = Ex[ϕ(x)⊗ ϕ(x)] and Σ̃m = Ex,W [ϕ(x)⊗
ϕ(x)], define

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗ , (8)

ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗ , (9)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄

bX
t and η̄bXWn :=

1
n

∑n−1
t=0 η̄

bXW
t . Accordingly, ηbXt can be regarded as a "de-

terministic" version of ηbiast : we omit the randomness
on X (data sampling, stochastic gradients) by replacing
[ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηbXWt is a
deterministic version of ηvXt by replacing Σm with its expec-
tation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Bias can be
decomposed as Bias . B1 + B2 + B3, where
B1 := EX,W

[
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]
and

B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 :=

〈η̄bXWn , Σ̃mη̄
bXW
n 〉. Here B3 is a deterministic quantity that

is closely connected to model (intrinsic) bias without any
randomness; while B1 and B2 evaluate the effect of random-
ness from X and W on the bias, respectively. The error
bounds (convergence rates) for them can be directly found
in Figure 1.

To bound B3, we directly focus on its formulation by virtue
of spectrum decomposition and integral estimation. To

bound B2, we have B2 = 1
n2EW

∥∥∥Σ
1
2
m
∑n−1
t=0 (ηbXt −ηbXWt )

∥∥∥2

,

where the key part ηbXt − ηbXWt can be estimated by Lemma 6.
To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 .∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1. The first term can be

upper bounded by
∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 .

Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary
notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0 , (10)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0 , (11)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn :=

1
n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a "semi-

stochastic" version of ηvart : we keep the randomness due to
the noise εt but omit the randomness onX (data sampling)
by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Like-
wise, ηvXWt can be regarded as a "semi-stochastic" version of
ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Variance can
be decomposed as Variance . V1 + V2 + V3,
where V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
,

V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact

the multiple randomness, V1 disentangles some random-
ness on data sampling, V2 discards some randomness on
initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

Variance : ηvar
t = [I − γtϕ(xt) ⊗ ϕ(xt)]ηvar

t−1 + γtεtϕ(xt)

Define ”semi-stochastic” version: ηvX
t := (I − γtΣm)ηvX

t−1 + γtεtϕ(xt) , ηvXW
t := (I − γtΣ̃m)ηvXW

t−1 + γtεtϕ(xt)
I V1 := EX,W,ε

[
〈η̄var

n − η̄vX
n ,Σm(η̄var

n − η̄vX
n )〉

]
I V2 := EX,W,ε

[
〈η̄vX

n −η̄vXW
n ,Σm(η̄vX

n −η̄vXW
n )〉

]
I V3 := EX,W,ε〈η̄vXW

n ,Σmη̄vXW
n 〉 ≤ 2

n2

∑n−1
t=0

∑n−1
k=t
EW

〈∏k−1
j=t

(I − γjΣ̃m)Σm,EX,ε[ηvXW
t ⊗ ηvXW

t ]︸                   ︷︷                   ︸
:=CvXW

t

〉
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4. Proof Outline and Discussion
In this section, we first introduce the structure of the proofs
with high level ideas, and then discuss our work with pre-
vious literature in terms of the used techniques and the
obtained results.

4.1. Proof outline

We (partly) disentangle the multiple randomness sources
on the dataX , the random features matrixW , the noise ε,
make full use of statistical properties of covariance operators
Σm and Σ̃m in Section 3.2, and provide the respective (bias
and variance) upper bounds in terms of multiple randomness
sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations.
Recall Σm = Ex[ϕ(x)⊗ ϕ(x)] and Σ̃m = Ex,W [ϕ(x)⊗
ϕ(x)], define

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗ , (8)

ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗ , (9)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄

bX
t and η̄bXWn :=

1
n

∑n−1
t=0 η̄

bXW
t . Accordingly, ηbXt can be regarded as a "de-

terministic" version of ηbiast : we omit the randomness
on X (data sampling, stochastic gradients) by replacing
[ϕ(x)ϕ(x)>] with its expectation Σm. Likewise, ηbXWt is a
deterministic version of ηvXt by replacing Σm with its expec-
tation Σ̃m (randomness on initialization).

By virtue of Minkowski inequality, the Bias can be
decomposed as Bias . B1 + B2 + B3, where
B1 := EX,W

[
〈η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )〉

]
and

B2 := EW

[
〈η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )〉

]
and B3 :=

〈η̄bXWn , Σ̃mη̄
bXW
n 〉. Here B3 is a deterministic quantity that

is closely connected to model (intrinsic) bias without any
randomness; while B1 and B2 evaluate the effect of random-
ness from X and W on the bias, respectively. The error
bounds (convergence rates) for them can be directly found
in Figure 1.

To bound B3, we directly focus on its formulation by virtue
of spectrum decomposition and integral estimation. To

bound B2, we have B2 = 1
n2EW

∥∥∥Σ
1
2
m
∑n−1
t=0 (ηbXt −ηbXWt )

∥∥∥2

,

where the key part ηbXt − ηbXWt can be estimated by Lemma 6.
To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 .∑
t ‖ηbXt − ηbXWt ‖22 +

∑
t EX‖Ht‖2 in Lemma 7, where

Ht−1 := [Σm−ϕ(xt)⊗ϕ(xt)]η
bX
t−1. The first term can be

upper bounded by
∑
t ‖ηbXt − ηbXWt ‖22 . Tr(Σm)nζ‖f∗‖2

in Lemma 8, and the second term admits
∑
t EX‖Ht‖2 .

Tr(Σm)‖f∗‖2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary
notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtϕ(xt), ηvX0 = 0 , (10)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtϕ(xt), ηvXW0 = 0 , (11)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄

vX
t , η̄vXWn :=

1
n

∑n−1
t=0 η̄

vXW
t . Accordingly, ηvXt can be regarded as a "semi-

stochastic" version of ηvart : we keep the randomness due to
the noise εt but omit the randomness onX (data sampling)
by replacing [ϕ(x)ϕ(x)>] with its expectation Σm. Like-
wise, ηvXWt can be regarded as a "semi-stochastic" version of
ηvXt by replacing Σm with its expectation Σ̃m (randomness
on initialization).

By virtue of Minkowski inequality, the Variance can
be decomposed as Variance . V1 + V2 + V3,
where V1 := EX,W ,ε

[
〈η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )〉

]
,

V2 := EX,W ,ε

[
〈η̄vXn − η̄vXWn ,Σm(η̄vXn − η̄vXWn )〉

]
, and V3 :=

EX,W ,ε〈η̄vXWn ,Σmη̄
vXW
n 〉. Though V1, V2, V3 still interact

the multiple randomness, V1 disentangles some random-
ness on data sampling, V2 discards some randomness on
initialization, and V3 focuses on the "minimal" interaction
between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covari-
ance operator CvXW

t := EX,ε[ηvXWt ⊗ ηvXWt ] in Lemma 10 and

Variance : ηvar
t = [I − γtϕ(xt) ⊗ ϕ(xt)]ηvar

t−1 + γtεtϕ(xt)

Define ”semi-stochastic” version: ηvX
t := (I − γtΣm)ηvX

t−1 + γtεtϕ(xt) , ηvXW
t := (I − γtΣ̃m)ηvXW

t−1 + γtεtϕ(xt)
I V1 := EX,W,ε

[
〈η̄var

n − η̄vX
n ,Σm(η̄var

n − η̄vX
n )〉

]
I V2 := EX,W,ε

[
〈η̄vX

n −η̄vXW
n ,Σm(η̄vX

n −η̄vXW
n )〉

]
I V3 := EX,W,ε〈η̄vXW

n ,Σmη̄vXW
n 〉 ≤ 2

n2

∑n−1
t=0

∑n−1
k=t
EW

〈∏k−1
j=t

(I − γjΣ̃m)Σm,EX,ε[ηvXW
t ⊗ ηvXW

t ]︸                   ︷︷                   ︸
:=CvXW

t

〉
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Proof framework: properties of covariance operators

Properties of Σ̃m

I the diagonal elements are the same a := [Σ̃m]ii, ∀i ∈ [m]
I the non-diagonal elements are the same b := [Σ̃m]ij ,∀i, j ∈ [m], i , j

Σ̃m = (a− b)Im + b11>

I two distinct eigenvalues: λ̃1 = a− b+ bm ∼ O(1), λ̃2 = · · · = λ̃m = a− b ∼ O(1/m)

Example (ReLU activation)
I (Σ̃m)ii = 1

2md
Tr(Σd)

I (Σ̃m)ij = 1
2mdπ

Tr(Σd)

sub-exponential random variables
‖Σm‖2, ‖Σm − Σ̃m‖2, Tr(Σm), and

∥∥Σ̃−1
m EW(Σ2

m)
∥∥

2
with O(1) sub-exponential norm order
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Function space: from kernel methods to neural networks

Neural tagent kernel (NTK)

Kernel Methods Neural Networks

reproducing kernel Hilbert space (RKHS)

e.g., Höder space, Besov space

Curse of dimensionality [7, 13, 14]

efficiently approximate non-smooth functions?

[computational cost grows exponentially fast]

function space view
what is the suitable function space for neural networks?
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RFMs: function spaces

Consider a RFM with infinite many features fa(x) =
∫

W a(w)φ(x,w)dµ(w), define

Fp,µ := {fa : ‖a‖Lp(µ) < ∞}, ‖f‖Fp,µ := inf
fa=f

‖a‖Lp(µ)

I RFMs ≡ kernel methods by taking p = 2 using Representer theorem [15]
◦ function space: reproducing kernel Hilbert space Hkµ = F2,µ

k̂m(x, x′) =
1
m

m∑
i=1

φ(x,wi)φ(x′,wi) → kµ(x, x′) =
∫

W
φ(x,w)φ(x′,w)dµ(w)

I RFMs . kernel methods if p < 2
function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q
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I RFMs ≡ kernel methods by taking p = 2 using Representer theorem [15]
◦ function space: reproducing kernel Hilbert space Hkµ = F2,µ

k̂m(x, x′) =
1
m

m∑
i=1

φ(x,wi)φ(x′,wi) → kµ(x, x′) =
∫

W
φ(x,w)φ(x′,w)dµ(w)

I RFMs . kernel methods if p < 2
function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 18/ 22



Learning beyond RKHS

learning in Fp,µ with p ∈ (1, 2) by RFMs

I good approximation if m ≥ Ω(n2 ∨ n
2p−1
2p−2 ) under interpolation [14] (Celentano, Misiakiewicz, Montanari,

2021)
I duality between approximation and generalization [16] (Chen, Long, Wu, 2023)

Questions
I can we do it more efficiently? from uniform sampling to data-dependent sampling
I how to do SGD beyond RKHS?

learning in Fp,µ with p = 1 by RFMs
I curse of dimensionality: approximation requires Ω(exp(d)) random features [14] (Celentano, Misiakiewicz,

Montanari, 2021)

beyond RKHS but still not data adaptive!
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From RKHS to Barron space

Definition (Barron space [17] (E, Ma, Wu, 2021))
For any 1 ≤ p ≤ ∞, we have

B = ∪µ∈P(W)Fp,µ , ‖f‖B = inf
µ∈P(W)

‖f‖Fp,µ

Remark: ◦ Two-layer neural networks: data-adaptive kernel B = ∪µ∈P(W)Hkµ

◦ equivalent to path norm ‖Θ‖P := 1
m

∑m

k=1 |ak|‖wk‖1
◦ parameter space vs. measure space

e.g., [7] (Bach, 2017), [18] (Bartolucci, Vito, Rosasco, Vigogna, 2022).

Optimization in Barron spaces is difficult: curse of dimensionality!
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Approximation Optimization

approximation generalization optimization
RKHS CoD - -

Barron spaces O(m− 2d
d+3 ) Θ(n− d+3

2d+3 )? CoD

I [19] (Siegel, Xu, 2022) on metric entropy

ε
− 2d

d+3
d. log N2(G1, ε) .d ε

− 2d
d+3 .
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approximation generalization optimization
RKHS CoD - -

Barron spaces O(m− 2d
d+3 ) Θ(n− d+3

2d+3 )? CoD

I [19] (Siegel, Xu, 2022) on metric entropy

ε
− 2d

d+3
d. log N2(G1, ε)����XXXX.d ε

− 2d
d+3 6 6144d5ε

− 2d
d+2 [Ours]
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What is the suitable function space beyond RKHS, that can be learned both statistically and
computationally for NNs?

I Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond. (Liu, Huang,
Chen, Suykens, TPAMI2021).

I IEEE ICASSP 2023 Tutorial - “Neural networks: the good, the bad, and the ugly”
I CVPR 2023 Tutorial - “Deep learning theory for computer vision”

Thanks for your attention!

Q & A
my homepage www.lfhsgre.org for more information!

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 22/ 22

www.lfhsgre.org


What is the suitable function space beyond RKHS, that can be learned both statistically and
computationally for NNs?

I Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond. (Liu, Huang,
Chen, Suykens, TPAMI2021).

I IEEE ICASSP 2023 Tutorial - “Neural networks: the good, the bad, and the ugly”
I CVPR 2023 Tutorial - “Deep learning theory for computer vision”

Thanks for your attention!

Q & A
my homepage www.lfhsgre.org for more information!

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 22/ 22

www.lfhsgre.org


What is the suitable function space beyond RKHS, that can be learned both statistically and
computationally for NNs?

I Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond. (Liu, Huang,
Chen, Suykens, TPAMI2021).

I IEEE ICASSP 2023 Tutorial - “Neural networks: the good, the bad, and the ugly”
I CVPR 2023 Tutorial - “Deep learning theory for computer vision”

Thanks for your attention!

Q & A
my homepage www.lfhsgre.org for more information!

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 22/ 22

www.lfhsgre.org


References I

[1] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt.
In International Conference on Learning Representations, 2019.
(Cited on pages 3 and 4.)

[2] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.
Reconciling modern machine-learning practice and the classical bias–variance trade-off.
the National Academy of Sciences, 116(32):15849–15854, 2019.
(Cited on pages 3 and 4.)

[3] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems, pages 1177–1184, 2007.
(Cited on pages 5 and 6.)

[4] Song Mei and Andrea Montanari.
The generalization error of random features regression: Precise asymptotics and the double descent curve.
Communications on Pure and Applied Mathematics, 75(4):667–766, 2022.
(Cited on pages 7, 8, 9, and 10.)

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 1/ 5



References II

[5] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari.
Linearized two-layers neural networks in high dimension.
Annals of Statistics, 49(2):1029–1054, 2021.
(Cited on pages 11, 12, 13, and 14.)

[6] Noureddine El Karoui.
The spectrum of kernel random matrices.
Annals of Statistics, 38(1):1–50, 2010.
(Cited on pages 11, 12, 13, and 14.)

[7] Francis Bach.
Breaking the curse of dimensionality with convex neural networks.
Journal of Machine Learning Research, 18(1):629–681, 2017.
(Cited on pages 11, 12, 13, 14, 38, 39, 47, 48, and 49.)

[8] Francis Bach and Eric Moulines.
Non-strongly-convex smooth stochastic approximation with convergence rate o(1/n).
Advances in Neural Information Processing Systems, 26:773–781, 2013.
(Cited on pages 23 and 24.)

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 2/ 5



References III

[9] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and Aaron
Sidford.
A markov chain theory approach to characterizing the minimax optimality of stochastic gradient descent (for
least squares).
arXiv preprint arXiv:1710.09430, 2017.
(Cited on pages 23 and 24.)

[10] Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade.
Benign overfitting of constant-stepsize sgd for linear regression.
In Conference on Learning Theory, 2021.
(Cited on pages 23 and 24.)

[11] Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco.
Learning with SGD and random features.
In Advances in Neural Information Processing Systems, pages 10212–10223, 2018.
(Cited on page 30.)

[12] Mikhail Belkin, Daniel Hsu, and Ji Xu.
Two models of double descent for weak features.
SIAM Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.
(Cited on page 30.)

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 3/ 5



References IV

[13] Gilad Yehudai and Ohad Shamir.
On the power and limitations of random features for understanding neural networks.
In Advances in Neural Information Processing Systems, pages 6594–6604, 2019.
(Cited on pages 38 and 39.)

[14] Michael Celentano, Theodor Misiakiewicz, and Andrea Montanari.
Minimum complexity interpolation in random features models.
arXiv preprint arXiv:2103.15996, 2021.
(Cited on pages 38, 39, 43, 44, 45, and 46.)

[15] Ali Rahimi and Benjamin Recht.
Uniform approximation of functions with random bases.
In Annual Allerton Conference on Communication, Control, and Computing, pages 555–561. IEEE, 2008.
(Cited on pages 40, 41, and 42.)

[16] Hongrui Chen, Jihao Long, and Lei Wu.
A duality framework for generalization analysis of random feature models and two-layer neural networks.
arXiv preprint arXiv:2305.05642, 2023.
(Cited on pages 43, 44, 45, and 46.)

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 4/ 5



References V

[17] Weinan E, Chao Ma, and Lei Wu.
The barron space and the flow-induced function spaces for neural network models.
Constructive Approximation, pages 1–38, 2021.
(Cited on pages 47, 48, and 49.)

[18] Francesca Bartolucci, Ernesto De Vito, Lorenzo Rosasco, and Stefano Vigogna.
Understanding neural networks with reproducing kernel Banach spaces.
Applied and Computational Harmonic Analysis, 2023.
(Cited on pages 47, 48, and 49.)

[19] Jonathan W Siegel and Jinchao Xu.
Sharp bounds on the approximation rates, metric entropy, and n-widths of shallow neural networks.
arXiv preprint arXiv:2101.12365, 2021.
(Cited on pages 50 and 51.)

Over-parameterization in NNs | Fanghui Liu, fanghui.liu@warwick.ac.uk Slide 5/ 5


	Appendix

