Bridge theory to practice: One-step full gradient can

suffice for low-rank fine-tuning, provably and efficiently

Fanghui Liu
fanghui.liu@warwick.ac.uk
Department of Computer Science, University of Warwick, UK

Centre for Discrete Mathematics and its Applications (DIMAP), Warwick
[joint work with Yuanhe Zhang (Warwick) and Yudong Chen (UW-Madison)]

m

i
7
if

vy (. BEES The . e
¢ . (0)7:N N
WARWICK g ‘e [AlanTuring JEoTUNN

My research

[Research interests o
e Foundations of machine learning (ML) Statistical
efficiency
C # Sample
complexity

Computational
efficiency
: # Time complexity

My research

O Research interests o

e Foundations of machine learning (ML) Statistical Kernel
. efficiency roxnmatlon

e Theory-grounded efficient algorithm design

Sample # Approximate
e Trustworth y ML complexity kernel function
Computatlonal Fine-tuning
efficiency
Time

featu re shift

My research

O Research interests

e Foundations of machine learning (ML) Statistical Kernel
. efficiency approxlmatlon

e Theory-grounded efficient algorithm design

Sample # Approximate

° Trustv\/orthy ML complexity kernel function
Computatlonal Fine-tunin

(3 Research goal efficiency 9
e characterize learning efficiency in theory #T'"‘e - SO

e contribute to practice

O Research interests

e Foundations of machine learning (ML) Statistical Kernel
. efficiency approxlmatlon

e Theory-grounded efficient algorithm design

Sample # Approximate

) Trustv\/orthy ML complexity kernel function
Computatlonal Fine-tunin

(3 Research goal efficiency 9
e characterize learning efficiency in theory #T'"‘e - SO

e contribute to practice

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!
— David Donoho, 2000. (Richard E. Bellman, 1957)

O Research interests

e Foundations of machine learning (ML) Statistical Kernel
. efficiency approxlmatlon

e Theory-grounded efficient algorithm design

Sample # Approximate

[TI’UStWOI’thy ML complexity kernel function
Computatlonal Fine-tunin

(3 Research goal efficiency 9
e characterize learning efficiency in theory #T'"‘e - SO

e contribute to practice

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!
— David Donoho, 2000. (Richard E. Bellman, 1957)

o= @ o G

In the era of machine learning (Pre-training)

relationship between data-centric, large model, huge compute resources

- “Illllhello

MLP: ResNet-152: Transfor GPT-2:
<< 1 million 60.3 million 340 millior 1.5 billion
parameters parameters paramet parameters

AlexNet

before 2012 2012 2015 2017 2019 2020 2022

From pre-training to (parameter-efficient) fine-tuning

e GPT3: 175 billion parameters
e Llama3.1: > 400 billion parameters

Gemini 1.5 Pro 300-500 billion parameters (unconfirmed)

Deepseek-v3: > 600 billion parameters
Llama 4 Behemoth: > 2,000 billion parameters

From pre-training to (parameter-efficient) fine-tuning

e GPT3: 175 billion parameters
e Llama3.1: > 400 billion parameters

Gemini 1.5 Pro 300-500 billion parameters (unconfirmed)

Deepseek-v3: > 600 billion parameters
Llama 4 Behemoth: > 2,000 billion parameters

Pre-training Fine-tuning Inference

domain-specific data

From pre-training to (parameter-efficient) fine-tuning

e GPT3: 175 billion parameters
e Llama3.1: > 400 billion parameters

Gemini 1.5 Pro 300-500 billion parameters (unconfirmed)

Deepseek-v3: > 600 billion parameters

Llama 4 Behemoth: > 2,000 billion parameters

pmfx oG ﬁ] — I—

I | S A &
AT el L4

(a) Prefix & Prompt (b) LoRA (c) LoRA variants

Low
-rank
ada
ption
(LoRA)
for
fin
e-tu
nin
gl]

WFT
= wre 4+
A
c Rdxk

Low-rank adaption (LoRA) for fine-tuning []

WFT — Wpre +A c Rdxk

o Formulation:

A ~ AB with A € R and B € R™*K
o Initialization:

[Ao]j ~ N(0,0%) and [Bolj =0, «a>0. (LoRA-init.)

Low-rank adaption (LoRA) for fine-tuning []

WFT — Wpre +A c Rdxk

e Formulation:

A ~ AB with A € R*" and B € R"™*K
o Initialization:
[Ao]j ~N(0,0%) and [Bglj =0, a>0. (LoRA-init.)

How theory guides practice (not limited to understanding)

e design new algorithm -> performance improvement (accuracy, efficiency)

e clarify some misconceptions in algorithm design

Motivation: non-linear dynamics and subspace alignment

o Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

Al lq TIGh .
= + nonlinear term .
BI+1 UGhT BT

e G': one-step full gradient (from full fine-tuning)

Motivation: non-linear dynamics and subspace alignment

o Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

Al lq TIGh .
= + nonlinear term .
BI+1 UGhT BT

e G': one-step full gradient (from full fine-tuning)
e The dynamics (A, B;) heavily depends on G!

Motivation: non-linear dynamics and subspace alignment

o Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

A I G'lla
(AR e dh‘r g | 4 nonlinear term .
Bi1 nG I B,

e G”: one-step full gradient (from full fine-tuning)
e The dynamics (A;, B;) heavily depends on G*!

e QI: How to characterize low-rank dynamics of LoRA and the associated

subspace alignment in theory?

Motivation: non-linear dynamics and subspace alignment

o Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

A I G'lla
(AR e dh‘r g | 4 nonlinear term .
Bi1 nG I B,

e G": one-step full gradient (from full fine-tuning)
e The dynamics (A;, B;) heavily depends on G*!

e QI: How to characterize low-rank dynamics of LoRA and the associated

subspace alignment in theory?

e Q2: How can our theoretical results contribute to algorithm design for
LoRA in practice?

Alignment and theory-grounded
algorithm

Al ..

top-r left
singular subspace

1

One-step Gradient

Bl».../VV[:’T] J

top-r right
singular subspace

Ay

L J
AO .’0. g
(Random Init)“e,

By =0

Pipeline

Spectral initialization

Pretrained
Weight Matrix +
Wi e Rk

N _/

U, S,V « SVD(-nVyL(W?)

Pretrained

Weight Matrix
Wi e

One-step GD under full fine-tuning

Problem setting and assumptions

o Pre-trained model: known W' € R9*k and the ReLU activation o
() (x" W*)T e R linear
x) = .
P o[(x" W¥)T] € R* nonlinear

Problem setting and assumptions

o Pre-trained model: known W' € R9*k and the ReLU activation o
fro(x) = (x" W*)T e R linear
P o[(x" WHT] € R nonlinear

o Unknown low-rank feature shift A: Wh =wirAa
o Rank(A) = r* < min{d, k} with unknown r*

Problem setting and assumptions

o Pre-trained model: known W% € R?*k and the ReLU activation &
fre(x) = {(xT W' e Rk linear .
o[(x" W¥)T] € R* nonlinear
o Unknown low-rank feature shift A: Wh =W 4+ A
o Rank(A) = r* < min{d, k} with unknown r*
o Downstream well-behaved data {(x;,y:)}"., for fine-tuning:

_ (7T,V|v/h)T eRK, {x}V, "X sub-Gaussian, linear
o[(x" Wh)—r], {xitN, i N(0, 14) nonlinear

Problem setting and assumptions

o Pre-trained model: known W% € R?*k and the ReLU activation &
fre(x) = {(xT W' e Rk linear .
o[(x" W¥)T] € R* nonlinear
o Unknown low-rank feature shift A: Wh = Wit A
o Rank(A) = r* < min{d, k} with unknown r*
o Downstream well-behaved data {(x;,y:)}"., for fine-tuning:

_ (7T,V|v/h)T eRK, {x}V, "X sub-Gaussian, linear
o[(x" Wh)—r], {xitN, i N(0, 14) nonlinear
o We assume N > d, e.g., MetaMathQA, Code-Feedback, d = 1,024 and

N ~ 10°

Full fine-tuning and LoRA updates

o full fine-tuning (initialized at W := W?)

W) = 1 H)?W — ?H; linear
S 2N Ho(y(W) — ?H; nonlinear

Full fine-tuning and LoRA updates

o full fine-tuning (initialized at W := W?)
- 2
1 HXW - YH linear
Lwy =517 e
2N o(XW)-Y nonlinear
F
o LoRA update
- 2
I By] HX(W”—i—AB)—YHF linear
L(A,B):=— 5 2
2N Ha(X(W“-i-AB))—YHF nonlinear

Full fine-tuning and LoRA updates

o full fine-tuning (initialized at W := W?)
HXW YH linear
W)= 2N HO‘(XW YH nonlinear
o LoRA update

i) HX(Wh—l-AB) YH linear
L(A,B):=
2N H (X(Wh-l-AB)) YH nonlinear

o Gradient descent with step-size n
At+1 = At - nVAL(At 5 Bt)
Bt+1 =B, - UVBZ(At 5 Bt)

Full fine-tuning and LoRA updates

o full fine-tuning (initialized at W := W?)

1) |xw - YH linear
L(W) .= —
2N HO’(XW YH nonlinear
o LoRA update
~ HX(Wh—l-AB) YH linear
L(A,B):=

2N H (X(Wh—l—AB)) YH nonlinear
o Gradient descent with step-size n

A1 = A, — 1V al(A;, B)

Bii1 = B, —VsL(A;,B:)

o Evaluation by ||A:B; — A||r: optimization and generalization!

2
Ex |y — o(W* + A:B)'%|| < 4B — Al

Our results: Alignment on B,

o one-step full gradient: G € Rdx" and rank(G*) = r*
G' = VLW = =X (Y - XWH) = —x XA

10

Our results: Alignment on B,

o one-step full gradient: G* € RY*¥ and rank(G*) = r*

1 ~T ~ ~ T~
G i= ~Vwl(WH) = TX (¥ - XWi) = 2X XA,

Theorem (Alignment between G* and B;)

For the linear setting, consider the LoRA updates with (LoRA-init.). We have
H Vi (6)V,(B))|| =0, veen,.

op

10

Our results: Alignment on B,

y ﬂ“

-
~~ One-step Gradient

Bi=0 / Vi,

P
(Random Tnitfes,/ ¥
[—

By .
o one-step full gradient: G* € RY*¥ and rank(G*) = r*

1T o = 1T
G i= ~Vwl(WH) = TX (¥ - XWi) = 2X XA,

Theorem (Alignment between G* and B;,)

For the linear setting, consider the LoRA updates with (LoRA-init.). We have
H Vi (6)V,(B))|| =0, veen,.

op

Remark: B; = 11 A} G* with Rank(B;) < r*

10

Our results: Alignment on A,

Theorem (Informal, LoRA initialization)

1

For r > r*, [Ao);j ~ N(0,a?), for any € € (0,1), choosing o = O(ed—i%'-3),
running GD with t* = ©(In d) steps, then we have

HUr* 1 Gh) Ur*(At*) ’ 5 €5 Whp
op

A

A(e -
.
(Random Imt) 4, / one-step Gradient

« i u.,ln

11

Our results: Alignment on A,

Theorem (Informal, LoRA initialization)

1

For r > r*, [Ao);j ~ N(0,a?), for any € € (0,1), choosing o = O(ed—i%'-3),
running GD with t* = ©(In d) steps, then we have

i
Hu,* (G U-(A)|| < e.w.hp.
op
1.0
-_ A
0.0 10 0.8 2
-25 008 B
% 50 2 5306
“é _75 go,s g
" 100 504 Eu.a
—1255 H
_150 02 02
1.0 le-l IEEZ le-3 le4 1.0 le-l]:;Z le-3 le4
.) L) 0.0 o ¥+ X o o})y& &p& (041,0 @‘?& @4,, @41,
Figure 2: Left: the risk 3||A:B: — A|5. &S
Right: the prm;:lpal angle is Figure 3: Principal angle of
mins HU’* 1(G%) Ur-(Ac)lop- fine-tuning T5 on MRPC.

11

Key message: Algorithm design principle

Can we “escape’ the alignment stage? J

12

Key message: Algorithm design principle

Can we “escape’ the alignment stage? J

o Take the SVD of G*: G* = Ug:S¢: V—(r;u

12

Key message: Algorithm design principle

Can we “escape’ the alignment stage? J

o Take the SVD of G*: G* = Ug:S¢: V—(r;u

~ ~1/2
Ao = [uah][. y [sch] .
, i (Spec-init.)

12

Key message: Algorithm design principle

Can we “escape’ the alignment stage? }

o Take the SVD of G*: G' = Ug:Sg: Vg

~ ~1/2
AO = |:UGh:| [1.r] |:SG[1 :| .
o i (Spec-init.)

Message

If we choose (Spec-init.), for both linear/nonlinear models, we can directly
achieve the alignment at initialization.

[A0Bo — Allr < €l|Allop, w.p. 1 —exp(—€*N)

12

Key message: Algorithm design principle

Can we “escape” the alignment stage? }

o Take the SVD of G*: G' = Ug:Sg: Vg

~ ~1/2
AO = |:UGh:| [1.r] |:SG[1 :| .
o i (Spec-init.)

Message

If we choose (Spec-init.), for both linear/nonlinear models, we can directly
achieve the alignment at initialization.

[A0Bo — Allr < €l|Allop, w.p. 1 —exp(—€*N)

The “best” initialization strategy!)

12

Toy example (1)

—— LoRA init
Spectral Init
-~ Global Minimizers hE
@ LoRA init Start P~ "
* LoRA init End N A
© Spec. Start ~~ T |
* Spec. End i N
T F =
!] |
L1
= L

(a) Trajectory 1 (b) Trajectory 2

Figure 4: Comparison of the GD trajectories between LoRA and ours. (a) and (b):
A € R? and B € R with different initializations. The set of global minimizers is
{ai =2/t,a3 =1/t,b" =t |t € R}

13

example (I1)

X Target Minimum Y * Target Minimum _— ~ X Target Minimum
== FFT Loss: 84.757 == FFT Loss: 10.150 == FFTLoss: 3.357
— LoRA Loss: —- LoRA Los ~— - LoRA Loss: 16.130

—— LoRA-One Loss: 3342

(a) At initialization (b) Middle (c) End

Figure 5: Comparison of the GD trajectories between LoRA and ours. We use
two-layer neural networks pre-trained on odd-labeled data and fine-tuned on
even-labeled data on MNIST.

14

Toy example (l1l): Phase portrait

Log-Transformed Surface with Phase Portrait and Trajectories

el
Phase Portrait (Negative Gradient)

I LoRA Init
I Spectral Init

log-transformed loss

15

One-step full gradient may suffice for low-rank fine-tuning!

Table 1: Fine-tuning T5 model across NLP tasks from GLUE.

Dataset MNLI SST-2 ColLA QNLI MRPC
Size 393k 67k 8.5k 105k 3.7k
Pre-trained - 89.79 59.03 49.28 63.48
One-step GD - 90.48 73.00 76.64 68.38

LORAg 85.30:|:0,04 94.04:|:0_og 72.84;&1,25 93.02:|:0_07 68.38;&0,01

16

One-step full gradient may suffice for low-rank fine-tuning!

Table 1: Fine-tuning T5 model across NLP tasks from GLUE.

Dataset MNLI SST-2 CoLA QNLI MRPC

Size 393k 67k 8.5k 105k 3.7k

Pre-trained - 89.79 59.03 49.28 63.48

One-step GD - 90.48 73.00 76.64 68.38

LORAg 85.30:|:0,04 94.04:|:0_og 72.84;&1,25 93.02:|:o_07 68.38;&0,01
Time cost

e CoLA LoRA: 47s, one-step: <1s
e MRPC LoRA: 25s, one-step: <1s

16

Clarification on gradient alignment based work

Motivation []
make LoRA's gradients align to full fine-tuning!

o best-2r approximation: rank(VAZ(At ,Bt)) + rank(VBZ(At ,By)) <2r

Clarification on gradient alignment based work

Motivation []
make LoRA's gradients align to full fine-tuning!

o best-2r approximation: rank(VAZ(At ,B:)) + rank(VBZ(At ,B:)) <2r

T

Ay [OG”L:, Bt [\76@[:’,“:24. (LoRA-GA)

Clarification on gradient alignment based work

Motivation []
make LoRA's gradients align to full fine-tuning!

o best-2r approximation: rank(VAZ(At ,B:)) + rank(VBZ(At ,B:)) <2r

Ay [OGhL [Bo [VG@T (LoRA-GA)

o But! B; will align to the right-side rank-r* singular subspace of G".

L1 [:,r+1:2r] ’

Clarification on gradient alignment based work

Motivation []
make LoRA'’s gradients align to full fine-tuning!

o best-2r approximation: rank(VAZ(At ,B:)) + rank(VBZ(At ,B:)) <2r

~ ~ T
Ay [UGNL | Bo [VG”L:,,HQ,]‘ (LoRA-GA)

o But! B; will align to the right-side rank-r* singular subspace of G".

—e— LORA-One 0
—+— LORA-SB s

—+— LoRA-GA

L1l

-5 -20
-® -25
-7
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs
(@r<r* (b) r>r*

17

Experiments

Key features in our LoRA-One algorithm

Algorithm 1 LoRA-One training for a specific layer

Input: Pre-trained weight W*, batched data {D,}];, LoRA rank r, LoRA
alpha «, loss function L
Output: W'+ S ArBr
Compute Vw L(W?) and U, S,V « SVD(VWL(Wh))
1/2
Ao - Uy, lrls[i 7]
1/2 T

B()(_\f S[r ir] [,1ir]

Clear Vi L(W?)

fort=1,..., T do

A T T -1
Gt «— VAL(A[-_]_, Bt—l) Bt— —1)\Ir
GtB — MVBZ(Ath Bt—l)

Update A, , B, « Adamw(c;f : Gf)

end

18

Experiments on NLP tasks from GLUE

Method MNLI SST-2 CoLA QNLI MRPC

LoRA 85.3010.04 94.041000 72841125 93.021007 68.3810.01
LoRA+ 85.814000 93.85410024 77.534020 93.144003 74.434139
P-LoRA 85.28410.15 93.881011 79581067 93.001007 83.91i116
PiSSA 85.7510.07 94.071006 74271030 93.154014 76.31i051
LoRA-GA 85.7040.00 94.111018 80571020 93.1810.06 85.2910.24
LoRA-Pro 86.031019 94.194013 81.94.054 93.42.005 86.604014

LoRA-One 85.89:|:0,08 94.53:|:0.13 82.04:|:0.22 93.37;&0,02 87.83;&).37

19

Results on LLaMA 2-7B (for one epoch)

GSM8K MMLU HumanEval
(r=28) Direct 8s-CoT Avg. PASS@1
LoRA 59.26:&0.75 53.36:&0.77 45.73:&0.30 25.85:|:1.75

LoRA-GA 56.44:&1,37 46.07:&1.01 45.70;&0,77 26.95:|:1‘30
LoRA—One 60.44:|:0.17 55.88:|:0_44 47-1210.12 28.66:|:0,39

One epoch, rank 8, three runs

e Hyperparameter optimized over learning rate, batch size

20

Results on LLaMA 2-7B (for one epoch)

GSM8K MMLU HumanEval
(r=28) Direct 8s-CoT Avg. PASS@1
LoRA 59.261076 53.361077 45731030 25.851175

LoRA-GA 5644137 46.074101 45.7040.77 26.9541 30
LoRA-One 60.44:&0.17 55.88:|:0_44 47.12:|:0,12 28.66:&0.39

One epoch, rank 8, three runs

e Hyperparameter optimized over learning rate, batch size

LoRA: 6h 20min + 3 min

20

Results on LLaMA 2-7B (for one epoch)

GSM8K MMLU HumanEval
(r=28) Direct 8s-CoT Avg. PASS@1
LoRA 59.261076 53.361077 45731030 25.851175

LoRA-GA 5644137 46.074101 45.7040.77 26.9541 30
LoRA-One 60.44:&0.17 55.88:|:0_44 47.12:|:0,12 28.66:&0.39

One epoch, rank 8, three runs

e Hyperparameter optimized over learning rate, batch size

LoRA: 21.6 GB +0.1GB

20

Results on LLaMA 2-7B (for one epoch)

GSM8K MMLU HumanEval
(r=28) Direct 8s-CoT Avg. PASS@1
LoRA 59-26:|:0.76 53.36:|:0,77 45.73:|:0,30 25.85:|:1.75

LoRA-GA 56.44i1.37 46.07i1.01 45-70i0.77 26.95i1‘30
LoRA-One 60.44:|:0.17 55.88:|:0.44 47.12:|:0.12 28.66:&0.39

One epoch, rank 8, three runs

e Hyperparameter optimized over learning rate, batch size

e Train: 100k subset from Code-Feedback

e Test: Humaneval, Pass@1

20

Results on LLaMA 2-7B (for one epoch)

GSMB8K MMLU HumanEval
(r=28) Direct 8s-CoT Avg. PASS@1
LoRA 59.264076 53.364077 45.734030 25.8511.75

LoRA-GA 56.44,137 46.074101 45.7040.77 26.9541 30
LoRA-One 60.44i0.17 55.88i0'44 47-12i0.12 28.66i0.39

One epoch, rank 8, three runs

e Hyperparameter optimized over learning rate, batch size

Train: 100k subset from Code-Feedback

Test: Humaneval, Pass@1

LoRA: 6h 24 min -

20

Results on LLaMA 2-7B (for one epoch)

GSMB8K MMLU HumanEval
(r=28) Direct 8s-CoT Avg. PASS@1
LoRA 59.264076 53.364077 45.734030 25.8511.75

LoRA-GA 56.44,137 46.074101 45.7040.77 26.9541 30
LoRA-One 60.44i0.17 55.88i0'44 47-12i0.12 28.66i0.39

One epoch, rank 8, three runs

e Hyperparameter optimized over learning rate, batch size

Train: 100k subset from Code-Feedback

Test: Humaneval, Pass@1

LoRA: 22.6 GB -11GB

20

Results on LLaMA 2-7B (for more epochs)

=
IS

LoRA
B LoRA+
HE |oRA-GA
HEEE | oRA-One

Accuracy (%)
o o
o N

ul
=]

[%d
o

Epoch 1 Epoch 2 Epoch 3 Epoch 4

Figure 7: Accuracy comparison across different methods over epochs on GSM8K.

21

Theory and proof...

Model Algorithm Initialization Results
GD (LoRA-init.) Subspace alignment of By
GD (LoRA-init.) Subspace alignment of A;
Linear GD (Spec-init.) [|[AoBo — A||F is small
GD (Spec-init.) Linear convergence of ||A:B: — Al|r
Precondition GD (Spec-init.) Linear convergence rate independent of k(A)
Nonlinear ~ Precondition GD (Spec-init.) Linear convergence rate independent of x(A)

e subspace alignment

e global convergence

22

Proof of sketch: Control the dynamics for alignment

~T ~

). ls mG[A] 1 0 mX XA:B.|[A;
= T v ~T ~ .

Bia| |mG' I | |B:] N|pnBlATX X 0 B;

_—— m—}/
=21 =H =2

23

Proof of sketch: Control the dynamics for alignment

I G* X' X
At—l—l d T At 1 0 7]1X XAtBt At
= T —_— T ~ .
Bia| |mG' I | |B:] N|pnBlATX X 0 B;
_—— ~—}4—
=21 =H =2Z;

o Approximated linear dynamical system Zii“ = H'Z,

e Schur decomposition of H

e obtain the dynamics of Z}™ (decouple A;™ and B}™ and obtain the
alignment to G
e Define the residual term E, := Z, — Z;™, control ||E.|p in early stage

N ||G”||og)
t<T '“(nAonip

23

Proof of sketch: Control the dynamics for alignment

I G* X' X
At—l—l d T At 1 0 'f]]_X XAtBt At
= T —_— T ~ .
Bia| |mG' I | |B:] N|pnBlATX X 0 B;
—_— ——
=21 =H =2Z;

o Approximated linear dynamical system Z%i“ = H'Z,

e Schur decomposition of H

e obtain the dynamics of Z}™ (decouple A;™ and B}™ and obtain the
alignment to G

e Define the residual term E, := Z, — Z;™, control ||E.|p in early stage

N HG“HOE)
t<T ln(||Ao||§p

oTransfer the alignment from A}™ to A, [2] (Stéger & Soltanolkotabi)
1U- L(G*)U - (A)llop S U7 L (PRYU - (PEAG + Ev)|lop is small, w.hp.

23

Global convergence on
nonlinear models

Recall problem setting and assumptions for nonlinear model

o Pre-trained model fore(x) = o[(x" W*)T] € R

o Unknown low-rank feature shift A: W= ws + A with Rank(A) = r*
o We assume r = r*. h N
o Downstream well-behaved data y = o[(x' W)'], {x;}", v N(0,14)

24

Recall problem setting and assumptions for nonlinear model

o Pre-trained model fore(x) = o[(x" W*)T] € R

o Unknown low-rank feature shift A: W= ws + A with Rank(A) = r*
o We assume r = r*. h N
o Downstream well-behaved data y = o[(x' W)'], {x;}", v N(0,14)

o training loss

i(a, B):z%”a(?(WM—AB)) _ ?Hj .

24

Recall problem setting and assumptions for nonlinear model

o Pre-trained model fye(x) = o[(x" W] e R

o Unknown low-rank feature shift A: Wu ‘= W¥ 4+ A with Rank(A) = r*
o We assume r = r*.
o Downstream well-behaved data y = o[(?TWh)T], {(xi N, i N(0,14)
o training loss

~ 1 - I

L(A,B):= WHJ(X(WMAB)) - YHF .
o gradient updates

Val(A.,B;)=—Jw.B., VgL(A.,B.)=—AlJy,,

where we define

Iy = %)?T [a()?v”v“) _ %)N(Tcr()? wt)] O (XW,).

24

Recall problem setting and assumptions for nonlinear model

o Pre-trained model fye(x) = o[(x" W)T] € R¥

o Unknown low-rank feature shift A: Wu ‘= W¥ 4+ A with Rank(A) = r*
o We assume r = r*. h N
o Downstream well-behaved data y = o[(x' W)'], {x;}", L N(0,14)

o training loss
~ 1 ~ ~ 12
] i _
L(A,B):= 2NH0<X(W +AB)) YHF.
o gradient updates
Val(A:,B:) = —Jw,Bl, Vgl(A:,B:)=—A]Jy,,

where we define
1ot o~ 1T = .

t

o additional assumptions on Wh, e.g., adapted weight has smaller signal than

pre-trained model
24

Global convergence

Theorem (Linear convergence rate)

Under (Spec-init.) and Jw, for gradient update (adding preconditioners),
choose constant step-size 1 < 1, we have

t
|48 - Ally 5 (1- g) A (D), w.h.p

25

Global convergence

Theorem (Linear convergence rate)

Under (Spec-init.) and Jw, for gradient update (adding preconditioners),
choose constant step-size 1 < 1, we have

t
|48 - Ally 5 (1- g) A (D), w.h.p

I

op

1A0Bo — All,, < +2|6°* ~ Ex |67

25

Global convergence

Theorem (Linear convergence rate)

Under (Spec-init.) and Jw, for gradient update (adding preconditioners),
choose constant step-size 1 < 1, we have

t
|48 - Ally 5 (1- g) A (D), w.h.p

I

op

1A0Bo — All,, < +2|6°* ~ Ex |67

. < 2)\+41(G")

25

Global convergence

Theorem (Linear convergence rate)

Under (Spec-init.) and Jw, for gradient update (adding preconditioners),
choose constant step-size 1 < 1, we have

t
|48 - Ally 5 (1- g) A (D), w.h.p

1A0Bo — All,, < +2|6" Bz [6*)| +
op

. < 2)\+41(G")

. using Ex[—Jw,] = 3(A:B: — A) + O(X)

25

Global convergence

Theorem (Linear convergence rate)

Under (Spec-init.) and Jw, for gradient update (adding preconditioners),
choose constant step-size 1 < 1, we have

t
|48 - Ally 5 (1- g) A (D), w.h.p

1A0Bo — All,, < +2|6" Bz [6*)| +
op

. < 2)\+41(G")

. using Ex[—Jw,] = 3(A:B: — A) + O(X)

e concentration error

‘Jwt - Ex[Jw.]

< Vde|AB: — Allg, w.h.p.
F

25

Global convergence

Theorem (Linear convergence rate)

Under (Spec-init.) and Jw, for gradient update (adding preconditioners),
choose constant step-size 1 < 1, we have

t
|4:B: — Al 5 (1= 7) Ae(B), w.hp

HAOBO - A”op <

I

op

e mfor

< 2)\+41(G")
using Ex[—Jw,] = 3(A:B: — A) + O(X)

Kr*

e concentration error

‘Jwt - Ex[Jw.]

< Vde|AiB: — Al , w.h.p. = control G
F

25

Proof of sketch on A;B; — A

1
[|Aer1Bers — Al S I — §(AtBt — A)|| [concentration+population]

+(1=7)||UaUp,(AB: ~ D)V, VE,

+[|(1a - Ua UR,) (AB: ~) (1~ V6,V

-+ cross terms

;

26

Proof of sketch on A;B; — A

1
[|Aer1Bers — Al S I — —(AtBt — A)|| [concentration+population]

+(1—n)HUAt h(A:B, — A)Vp Vi

+ H (16— Ua UL,)(AB. — 1) (1~ V5, V)

-+ cross terms

;

UAt 0d>< r

c R(d+k)><2r
Okxr VB,

L=

then LL" is a projection matrix, l44x — LL" = LLLI

2
o transformed to lower bound HL—EALH
F

< 1 by Wedin's sin-6 theorem

o upper bound HL—E_U
op

26

Takeaway messages

o LoRA-One: One-step full gradient could suffice for fine-tuning large
language models, provably and efficiently. ICML'25 spotlight. code

e subspace alignment: G* and (A¢, B;) = theory-grounded algorithm design
e “optimal” non-zero initialization strategy
e clarification on gradient alignment based algorithms

27

https://arxiv.org/abs/2502.01235
https://arxiv.org/abs/2502.01235
https://github.com/YuanheZ/LoRA-One
www.lfhsgre.org

Takeaway messages

o LoRA-One: One-step full gradient could suffice for fine-tuning large
language models, provably and efficiently. ICML'25 spotlight. code

e subspace alignment: G* and (A¢, B;) = theory-grounded algorithm design
e “optimal” non-zero initialization strategy
e clarification on gradient alignment based algorithms

e How to handle nonlinearity at a theoretical level (e.g., training dynamics)

e How to precisely and efficiently approximate nonlinearity at a practical
level under theoretical guidelines

27

https://arxiv.org/abs/2502.01235
https://arxiv.org/abs/2502.01235
https://github.com/YuanheZ/LoRA-One
www.lfhsgre.org

Takeaway messages

o LoRA-One: One-step full gradient could suffice for fine-tuning large
language models, provably and efficiently. ICML'25 spotlight. code

e subspace alignment: G* and (A¢, B;) = theory-grounded algorithm design
e “optimal” non-zero initialization strategy
e clarification on gradient alignment based algorithms

e How to handle nonlinearity at a theoretical level (e.g., training dynamics)

e How to precisely and efficiently approximate nonlinearity at a practical
level under theoretical guidelines

Thank you!
fanghui.liu@warwick.ac.uk

www.lfhsgre.org

27

https://arxiv.org/abs/2502.01235
https://arxiv.org/abs/2502.01235
https://github.com/YuanheZ/LoRA-One
www.lfhsgre.org

References i

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen.

LoRA: Low-rank adaptation of large language models.

In International Conference on Learning Representations, 2022.

Dominik Stéger and Mahdi Soltanolkotabi.

Small random initialization is akin to spectral learning:
Optimization and generalization guarantees for overparameterized
low-rank matrix reconstruction.

In Advances in Neural Information Processing Systems, pages
23831-23843, 2021.

Shaowen Wang, Linxi Yu, and Jian Li.
LoRA-GA: Low-rank adaptation with gradient approximation.
In Advances in Neural Information Processing Systems, 2024.

	Alignment and theory-grounded algorithm
	Experiments
	Theory and proof...
	Global convergence on nonlinear models
	Appendix

