Bridge theory to practice: One-step full gradient can suffice for low-rank fine-tuning, provably and efficiently

Fanghui Liu

fanghui.liu@warwick.ac.uk

Department of Computer Science, University of Warwick, UK Centre for Discrete Mathematics and its Applications (DIMAP), Warwick [joint work with Yuanhe Zhang (Warwick) and Yudong Chen (UW-Madison)]

\Box Research interests

- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML

Research interests

- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML

- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize learning efficiency in theory
- contribute to practice

- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize learning efficiency in theory
- contribute to practice

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!

- David Donoho, 2000. (Richard E. Bellman, 1957)

Research interests

- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize learning efficiency in theory
- contribute to practice

Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in high dimensions that can be a curse!

- David Donoho, 2000. (Richard E. Bellman, 1957)

In the era of machine learning (Pre-training)

relationship between data-centric, large model, huge compute resources

From pre-training to (parameter-efficient) fine-tuning

- GPT3: 175 billion parameters
- Llama3.1: > 400 billion parameters
- Gemini 1.5 Pro 300–500 billion parameters (unconfirmed)
- Deepseek-v3: > 600 billion parameters
- Llama 4 Behemoth: > 2,000 billion parameters

From pre-training to (parameter-efficient) fine-tuning

- GPT3: 175 billion parameters
- Llama3.1: > 400 billion parameters
- Gemini 1.5 Pro 300–500 billion parameters (unconfirmed)
- Deepseek-v3: > 600 billion parameters
- Llama 4 Behemoth: > 2,000 billion parameters

Pre-training	Fine-tuning	Inference
	domain-specific data	

From pre-training to (parameter-efficient) fine-tuning

- GPT3: 175 billion parameters
- Llama3.1: > 400 billion parameters
- Gemini 1.5 Pro 300–500 billion parameters (unconfirmed)
- Deepseek-v3: > 600 billion parameters
- Llama 4 Behemoth: > 2,000 billion parameters

Low-rank adaption (LoRA) for fine-tuning [1]

$$\boldsymbol{W}^{\mathrm{FT}} = \boldsymbol{W}^{\mathrm{pre}} + \Delta \in \mathbb{R}^{d imes k}$$

clarify some misconceptions in algorithm design

Low-rank adaption (LoRA) for fine-tuning [1]

$$\boldsymbol{W}^{\mathrm{FT}} = \boldsymbol{W}^{\mathrm{pre}} + \Delta \in \mathbb{R}^{d imes k}$$

LoRA

• Formulation:

$$\Delta \approx \boldsymbol{A}\boldsymbol{B}$$
 with $\boldsymbol{A} \in \mathbb{R}^{d \times r}$ and $\boldsymbol{B} \in \mathbb{R}^{r \times k}$

Initialization:

$$[\mathbf{A}_0]_{ij} \sim \mathcal{N}(0, \alpha^2)$$
 and $[\mathbf{B}_0]_{ij} = 0$, $\alpha > 0$. (LoRA-init.)

How theory guides practice (not limited to understanding)

- design new algorithm -> performance improvement (accuracy, efficiency)
- clarify some misconceptions in algorithm design

Low-rank adaption (LoRA) for fine-tuning [1]

$$\boldsymbol{W}^{\mathrm{FT}} = \boldsymbol{W}^{\mathrm{pre}} + \Delta \in \mathbb{R}^{d imes k}$$

LoRA

• Formulation:

$$\Delta \approx \boldsymbol{A}\boldsymbol{B}$$
 with $\boldsymbol{A} \in \mathbb{R}^{d \times r}$ and $\boldsymbol{B} \in \mathbb{R}^{r \times k}$

Initialization:

$$[oldsymbol{A}_0]_{ij}\sim\mathcal{N}(0,lpha^2)$$
 and $[oldsymbol{B}_0]_{ij}=0\,,\quad lpha>0\,.$ (LoRA-init.)

How theory guides practice (not limited to understanding)

- design new algorithm -> performance improvement (accuracy, efficiency)
- clarify some misconceptions in algorithm design

• Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^\top \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \boldsymbol{G}^{\natural} \\ \eta \boldsymbol{G}^{\natural^\top} & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^\top \end{bmatrix} + \text{nonlinear term} \,.$$

- **G**^{\(\beta\)}: one-step full gradient (from full fine-tuning)
- The dynamics $(\boldsymbol{A}_t, \boldsymbol{B}_t)$ heavily depends on $\boldsymbol{G}^{\natural}$

- Q1: How to characterize low-rank dynamics of LoRA and the associated subspace alignment in theory?
- *Q2:* How can our theoretical results contribute to algorithm design for LoRA in practice?

• Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^\top \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \boldsymbol{G}^{\natural} \\ \eta \boldsymbol{G}^{\natural^\top} & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^\top \end{bmatrix} + \text{nonlinear term} \,.$$

- **G**^{\$}: one-step full gradient (from full fine-tuning)
- The dynamics $(\boldsymbol{A}_t, \boldsymbol{B}_t)$ heavily depends on $\boldsymbol{G}^{\natural}$!

- Q1: How to characterize low-rank dynamics of LoRA and the associated subspace alignment in theory?
- *Q2:* How can our theoretical results contribute to algorithm design for LoRA in practice?

• Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^\top \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \boldsymbol{G}^{\natural} \\ \eta \boldsymbol{G}^{\natural^\top} & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^\top \end{bmatrix} + \text{nonlinear term} \,.$$

- **G**^{\$}: one-step full gradient (from full fine-tuning)
- The dynamics $(\boldsymbol{A}_t, \boldsymbol{B}_t)$ heavily depends on $\boldsymbol{G}^{\natural}$!

- Q1: How to characterize low-rank dynamics of LoRA and the associated subspace alignment in theory?
- *Q2:* How can our theoretical results contribute to algorithm design for LoRA in practice?

• Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

$$\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^\top \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_d & \eta \boldsymbol{G}^{\natural} \\ \eta \boldsymbol{G}^{\natural^\top} & \boldsymbol{I}_k \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_t \\ \boldsymbol{B}_t^\top \end{bmatrix} + \text{nonlinear term} \,.$$

- **G**^{\(\beta\)}: one-step full gradient (from full fine-tuning)
- The dynamics $(\boldsymbol{A}_t, \boldsymbol{B}_t)$ heavily depends on $\boldsymbol{G}^{\natural}$!

- Q1: How to characterize low-rank dynamics of LoRA and the associated subspace alignment in theory?
- *Q2:* How can our theoretical results contribute to algorithm design for LoRA in practice?

Alignment and theory-grounded algorithm

• Pre-trained model: known $\boldsymbol{W}^{\natural} \in \mathbb{R}^{d \times k}$ and the ReLU activation σ $f_{\text{pre}}(\boldsymbol{x}) := \begin{cases} (\boldsymbol{x}^{\top} \boldsymbol{W}^{\natural})^{\top} \in \mathbb{R}^{k} & \text{linear} \\ \sigma[(\boldsymbol{x}^{\top} \boldsymbol{W}^{\natural})^{\top}] \in \mathbb{R}^{k} & \text{nonlinear} \end{cases}$

 \circ Unknown low-rank feature shift $\Delta\colon \, \widetilde{oldsymbol{W}}^{\mathfrak{q}}:=oldsymbol{W}^{\mathfrak{q}}+\Delta$

 $\circ \; \mathsf{Rank}(\Delta) = r^* < \mathsf{min}\{d\,,k\}$ with unknown r^*

 \circ Downstream well-behaved data $\{(\widetilde{x}_i,\widetilde{y}_i)\}_{i=1}^N$ for fine-tuning:

$$\widetilde{\boldsymbol{y}} := \begin{cases} (\widetilde{\boldsymbol{x}}^\top \widetilde{\boldsymbol{W}}^{\natural})^\top \in \mathbb{R}^k, & \{\widetilde{\boldsymbol{x}}_i\}_{i=1}^N \overset{i.i.d.}{\sim} \text{ sub-Gaussian, linear} \\ \sigma[(\widetilde{\boldsymbol{x}}^\top \widetilde{\boldsymbol{W}}^{\natural})^\top], & \{\widetilde{\boldsymbol{x}}_i\}_{i=1}^N \overset{i.i.d.}{\sim} \mathcal{N}(0, \boldsymbol{I}_d) & \text{nonlinear} \end{cases}.$$

 \circ We assume N>d, e.g., MetaMathQA, Code-Feedback, d=1,024 and $N\sim 10^5$

 \circ Pre-trained model: known $\pmb{W}^{\natural} \in \mathbb{R}^{d \times k}$ and the ReLU activation σ

$$f_{\mathsf{pre}}(\boldsymbol{x}) := \begin{cases} (\boldsymbol{x}^\top \boldsymbol{W}^{\natural})^\top \in \mathbb{R}^k & \text{linear} \\ \sigma[(\boldsymbol{x}^\top \boldsymbol{W}^{\natural})^\top] \in \mathbb{R}^k & \text{nonlinear} \end{cases}$$

 \circ Unknown low-rank feature shift $\Delta : ~ \widetilde{\textbf{\textit{W}}}^{\natural} := \textbf{\textit{W}}^{\natural} + \Delta$

 $\circ \operatorname{\mathsf{Rank}}(\Delta) = r^* < \min\{d, k\}$ with unknown r^*

• Downstream well-behaved data $\{(\widetilde{x}_i, \widetilde{y}_i)\}_{i=1}^N$ for fine-tuning:

 $\widetilde{\mathbf{y}} := \begin{cases} (\widetilde{\mathbf{x}}^\top \widetilde{\mathbf{W}}^{\texttt{H}})^\top \in \mathbb{R}^k, & \{\widetilde{\mathbf{x}}_i\}_{i=1}^{N} \stackrel{i.i.d.}{\sim} \text{sub-Gaussian, linear} \\ \sigma[(\widetilde{\mathbf{x}}^\top \widetilde{\mathbf{W}}^{\texttt{H}})^\top], & \{\widetilde{\mathbf{x}}_i\}_{i=1}^{N} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{I}_d) & \text{nonlinear} \end{cases}$ We assume N > d, e.g., MetaMathQA, Code-Feedback, d = 1,024 and $V \sim 10^5$

 \circ Pre-trained model: known $\pmb{W}^{\natural} \in \mathbb{R}^{d imes k}$ and the ReLU activation σ

$$f_{\sf pre}({m x}) := egin{cases} ({m x}^{ op} {m W}^{
angle})^{ op} \in \mathbb{R}^k & {\sf linear} \ \sigma[({m x}^{ op} {m W}^{
angle})^{ op}] \in \mathbb{R}^k & {\sf nonlinear} \end{cases}$$

 \circ Unknown low-rank feature shift $\Delta : ~ \widetilde{\textbf{\textit{W}}}^{\natural} := \textbf{\textit{W}}^{\natural} + \Delta$

- $\circ \mathsf{Rank}(\Delta) = r^* < \min\{d\,,k\}$ with unknown r^*
- Downstream well-behaved data $\{(\widetilde{x}_i, \widetilde{y}_i)\}_{i=1}^N$ for fine-tuning:

$$\widetilde{\mathbf{y}} := \begin{cases} (\widetilde{\mathbf{x}}^{\top} \widetilde{\mathbf{W}}^{\natural})^{\top} \in \mathbb{R}^{k}, & \{\widetilde{\mathbf{x}}_{i}\}_{i=1}^{N} \stackrel{i.i.d.}{\sim} \text{sub-Gaussian, linear} \\ \sigma[(\widetilde{\mathbf{x}}^{\top} \widetilde{\mathbf{W}}^{\natural})^{\top}], & \{\widetilde{\mathbf{x}}_{i}\}_{i=1}^{N} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \mathbf{I}_{d}) & \text{nonlinear} \end{cases}$$

 \circ We assume N>d, e.g., MetaMathQA, Code-Feedback, d=1,024 and $N\sim 10^5$

 \circ Pre-trained model: known $\pmb{W}^{\natural} \in \mathbb{R}^{d \times k}$ and the ReLU activation σ

$$f_{\sf pre}({m x}) := egin{cases} ({m x}^{ op} {m W}^{
angle})^{ op} \in \mathbb{R}^k & {\sf linear} \ \sigma[({m x}^{ op} {m W}^{
angle})^{ op}] \in \mathbb{R}^k & {\sf nonlinear} \end{cases}$$

 \circ Unknown low-rank feature shift $\Delta\colon \, \widetilde{\textbf{W}}^{\natural}:= \textbf{W}^{\natural} + \Delta$

- $\circ \mathsf{Rank}(\Delta) = r^* < \min\{d\,,k\}$ with unknown r^*
- Downstream well-behaved data $\{(\widetilde{x}_i, \widetilde{y}_i)\}_{i=1}^N$ for fine-tuning:

$$\widetilde{\boldsymbol{y}} := \begin{cases} (\widetilde{\boldsymbol{x}}^\top \widetilde{\boldsymbol{W}}^{\natural})^\top \in \mathbb{R}^k, & \{\widetilde{\boldsymbol{x}}_i\}_{i=1}^N \overset{i.i.d.}{\sim} \text{ sub-Gaussian, linear} \\ \sigma[(\widetilde{\boldsymbol{x}}^\top \widetilde{\boldsymbol{W}}^{\natural})^\top], & \{\widetilde{\boldsymbol{x}}_i\}_{i=1}^N \overset{i.i.d.}{\sim} \mathcal{N}(0, \boldsymbol{I}_d) & \text{nonlinear} \end{cases}.$$

 \circ We assume N>d, e.g., MetaMathQA, Code-Feedback, d=1,024 and $N\sim 10^5$

full fine-tuning (initialized at
$$\boldsymbol{W}_0 := \boldsymbol{W}^{\natural}$$
)

$$L(\boldsymbol{W}) := \frac{1}{2N} \begin{cases} \left\| \widetilde{\boldsymbol{X}} \boldsymbol{W} - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^2 & \text{linear} \\ \left\| \sigma(\widetilde{\boldsymbol{X}} \boldsymbol{W}) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^2 & \text{nonlinear} \end{cases}$$

LoRA update

0

$$\widetilde{L}(\boldsymbol{A}, \boldsymbol{B}) := \frac{1}{2N} \begin{cases} \left\| \widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural} + \boldsymbol{A}\boldsymbol{B}) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{linear} \\ \left\| \sigma \left(\widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural} + \boldsymbol{A}\boldsymbol{B}) \right) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{nonlinear} \end{cases}$$

 \circ Gradient descent with step-size η

$$A_{t+1} = A_t - \eta \nabla_A \widehat{L}(A_t, B_t)$$
$$B_{t+1} = B_t - \eta \nabla_B \widetilde{L}(A_t, B_t)$$

 \circ Evaluation by $\|m{A}_tm{B}_t-\Delta\|_{
m F}$: optimization and generalization!

$$\mathbb{E}_{\widetilde{\mathbf{x}}} \left\| \widetilde{\mathbf{y}} - \sigma (\mathbf{W}^{\natural} + \mathbf{A}_t \mathbf{B}_t)^{\top} \widetilde{\mathbf{x}} \right\|_2^2 \lesssim \left\| \mathbf{A}_t \mathbf{B}_t - \Delta \right\|_{\mathrm{F}}^2$$

• full fine-tuning (initialized at $\boldsymbol{W}_{0} := \boldsymbol{W}^{\natural}$) $L(\boldsymbol{W}) := \frac{1}{2N} \begin{cases} \left\| \widetilde{\boldsymbol{X}} \, \boldsymbol{W} - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{linear} \\ \left\| \sigma(\widetilde{\boldsymbol{X}} \, \boldsymbol{W}) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{nonlinear} \end{cases}$

 \circ LoRA update

$$\widetilde{L}(\boldsymbol{A},\boldsymbol{B}) := \frac{1}{2N} \begin{cases} \left\| \widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural} + \boldsymbol{A}\boldsymbol{B}) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{linear} \\ \left\| \sigma \left(\widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural} + \boldsymbol{A}\boldsymbol{B}) \right) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{nonlinear} \end{cases}$$

 \circ Gradient descent with step-size r

$$A_{t+1} = A_t - \eta \nabla_A \widehat{L}(A_t, B_t)$$
$$B_{t+1} = B_t - \eta \nabla_B \widetilde{L}(A_t, B_t)$$

 \circ Evaluation by $\|m{A}_tm{B}_t-\Delta\|_{
m F}$: optimization and generalization!

$$\mathbb{E}_{\widetilde{\mathbf{x}}} \left\| \widetilde{\mathbf{y}} - \sigma (\mathbf{W}^{\natural} + \mathbf{A}_t \mathbf{B}_t)^{\top} \widetilde{\mathbf{x}} \right\|_2^2 \lesssim \left\| \mathbf{A}_t \mathbf{B}_t - \Delta \right\|_{\mathrm{F}}^2$$

 \circ full fine-tuning (initialized at $oldsymbol{W}_0:=oldsymbol{W}^{
atural})$

$$L(\boldsymbol{W}) := \frac{1}{2N} \begin{cases} \left\| \widetilde{\boldsymbol{X}} \, \boldsymbol{W} - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{linear} \\ \left\| \sigma(\widetilde{\boldsymbol{X}} \, \boldsymbol{W}) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{nonlinear} \end{cases}$$

 \circ LoRA update

$$\widetilde{L}(\boldsymbol{A},\boldsymbol{B}) := \frac{1}{2N} \begin{cases} \left\| \widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural} + \boldsymbol{A}\boldsymbol{B}) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{linear} \\ \left\| \sigma \left(\widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural} + \boldsymbol{A}\boldsymbol{B}) \right) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{nonlinear} \end{cases}$$

 \circ Gradient descent with step-size η

$$\begin{aligned} \mathbf{A}_{t+1} &= \mathbf{A}_t - \eta \nabla_{\mathbf{A}} \widetilde{L}(\mathbf{A}_t, \mathbf{B}_t) \\ \mathbf{B}_{t+1} &= \mathbf{B}_t - \eta \nabla_{\mathbf{B}} \widetilde{L}(\mathbf{A}_t, \mathbf{B}_t) \end{aligned}$$

 \circ Evaluation by $\| oldsymbol{A}_t oldsymbol{B}_t - \Delta \|_{ extsf{F}}$: optimization and generalization!

$$\mathbb{E}_{\widetilde{\mathbf{x}}} \left\| \widetilde{\mathbf{y}} - \sigma (\mathbf{W}^{\natural} + \mathbf{A}_t \mathbf{B}_t)^{\mathsf{T}} \widetilde{\mathbf{x}} \right\|_2^2 \lesssim \left\| \mathbf{A}_t \mathbf{B}_t - \Delta \right\|_{\mathrm{F}}^2$$

 \circ full fine-tuning (initialized at $oldsymbol{W}_0:=oldsymbol{W}^{
atural})$

$$L(\boldsymbol{W}) := \frac{1}{2N} \begin{cases} \left\| \widetilde{\boldsymbol{X}} \, \boldsymbol{W} - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{linear} \\ \left\| \sigma(\widetilde{\boldsymbol{X}} \, \boldsymbol{W}) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{nonlinear} \end{cases}$$

 \circ LoRA update

$$\widetilde{L}(\boldsymbol{A},\boldsymbol{B}) := \frac{1}{2N} \begin{cases} \left\| \widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural} + \boldsymbol{A}\boldsymbol{B}) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{linear} \\ \left\| \sigma \left(\widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural} + \boldsymbol{A}\boldsymbol{B}) \right) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2} & \text{nonlinear} \end{cases}$$

 \circ Gradient descent with step-size η

$$\begin{aligned} \mathbf{A}_{t+1} &= \mathbf{A}_t - \eta \nabla_{\mathbf{A}} \widetilde{L}(\mathbf{A}_t, \mathbf{B}_t) \\ \mathbf{B}_{t+1} &= \mathbf{B}_t - \eta \nabla_{\mathbf{B}} \widetilde{L}(\mathbf{A}_t, \mathbf{B}_t) \end{aligned}$$

 \circ Evaluation by $\| \boldsymbol{A}_t \boldsymbol{B}_t - \Delta \|_{\mathrm{F}}$: optimization and generalization!

$$\mathbb{E}_{\widetilde{\mathbf{x}}} \left\| \widetilde{\mathbf{y}} - \sigma (\mathbf{W}^{\natural} + \mathbf{A}_t \mathbf{B}_t)^{\mathsf{T}} \widetilde{\mathbf{x}} \right\|_2^2 \lesssim \left\| \mathbf{A}_t \mathbf{B}_t - \Delta \right\|_{\mathrm{F}}^2$$

Our results: Alignment on B_t

 \circ one-step full gradient: $m{G}^{\natural} \in \mathbb{R}^{d imes k}$ and rank $(m{G}^{\natural}) = r^{*}$

$$\boldsymbol{G}^{\natural} := -\nabla_{\boldsymbol{W}} \mathcal{L}(\boldsymbol{W}^{\natural}) = \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} (\widetilde{\boldsymbol{Y}} - \widetilde{\boldsymbol{X}} \boldsymbol{W}^{\natural}) = \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} \widetilde{\boldsymbol{X}} \Delta.$$

Theorem (Alignment between G^{2} and B_{t})

For the linear setting, consider the LoRA updates with (LoRA-init.). We have $\left\| \boldsymbol{V}_{r^*,\perp}^{\mathsf{T}} \left(\boldsymbol{G}^{\natural} \right) \boldsymbol{V}_{r^*} (\boldsymbol{B}_t) \right\|_{op} = 0, \quad \forall t \in \mathbb{N}_+.$

Remark: $oldsymbol{B}_1 = \eta_1 oldsymbol{A}_0^{\!\!\top} oldsymbol{G}^{\natural}$ with $\mathsf{Rank}(oldsymbol{B}_1) \leq r^*$

Our results: Alignment on B_t

 \circ one-step full gradient: $m{G}^{
atural} \in \mathbb{R}^{d imes k}$ and rank $(m{G}^{
atural}) = r^{st}$

$$\boldsymbol{G}^{\natural} := -\nabla_{\boldsymbol{W}} L(\boldsymbol{W}^{\natural}) = \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} (\widetilde{\boldsymbol{Y}} - \widetilde{\boldsymbol{X}} \boldsymbol{W}^{\natural}) = \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} \widetilde{\boldsymbol{X}} \Delta.$$

Theorem (Alignment between G^{\ddagger} and B_t)

For the linear setting, consider the LoRA updates with (LoRA-init.). We have $\left\| \boldsymbol{V}_{r^*,\perp}^{\top} \left(\boldsymbol{G}^{\natural} \right) \boldsymbol{V}_{r^*} (\boldsymbol{B}_t) \right\|_{op} = 0, \quad \forall t \in \mathbb{N}_+.$

Remark: $m{B_1} = \eta_1 m{A}_0^{ op} m{G}^{ op}$ with Rank $(m{B_1}) \leq r^*$

Our results: Alignment on B_t

 \circ one-step full gradient: $m{G}^{
atural} \in \mathbb{R}^{d imes k}$ and rank $(m{G}^{
atural}) = r^{st}$

$$\boldsymbol{G}^{\natural} := -\nabla_{\boldsymbol{W}} L(\boldsymbol{W}^{\natural}) = \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} (\widetilde{\boldsymbol{Y}} - \widetilde{\boldsymbol{X}} \boldsymbol{W}^{\natural}) = \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} \widetilde{\boldsymbol{X}} \Delta.$$

Theorem (Alignment between G^{\ddagger} and B_t)

For the linear setting, consider the LoRA updates with (LoRA-init.). We have $\left\| \boldsymbol{V}_{r^*,\perp}^{\top} \left(\boldsymbol{G}^{\natural} \right) \boldsymbol{V}_{r^*} (\boldsymbol{B}_t) \right\|_{op} = 0, \quad \forall t \in \mathbb{N}_+.$

Remark: $\boldsymbol{B}_1 = \eta_1 \boldsymbol{A}_0^{\!\top} \boldsymbol{G}^{\natural}$ with $\mathsf{Rank}(\boldsymbol{B}_1) \leq r^*$

Our results: Alignment on A_t

Theorem (Informal, LoRA initialization)

For $r \ge r^*$, $[\mathbf{A}_0]_{ij} \sim \mathcal{N}(0, \alpha^2)$, for any $\epsilon \in (0, 1)$, choosing $\alpha = \mathcal{O}(\epsilon d^{-\frac{3}{4}\kappa^{\natural} - \frac{1}{2}})$, running GD with $t^* = \Theta(\ln d)$ steps, then we have

$$\left\| \boldsymbol{U}_{r^*,\perp}^{\!\!\!\top}(\boldsymbol{G}^{\natural}) \; \boldsymbol{U}_{r^*}(\boldsymbol{A}_{t^*}) \right\|_{op} \lesssim \epsilon, w.h.p.$$

Our results: Alignment on A_t

Theorem (Informal, LoRA initialization)

For $r \ge r^*$, $[\mathbf{A}_0]_{ij} \sim \mathcal{N}(0, \alpha^2)$, for any $\epsilon \in (0, 1)$, choosing $\alpha = \mathcal{O}(\epsilon d^{-\frac{3}{4}\kappa^{\natural} - \frac{1}{2}})$, running GD with $t^* = \Theta(\ln d)$ steps, then we have

$$\left\| \boldsymbol{U}_{r^*,\perp}^{\top}(\boldsymbol{G}^{\natural}) \; \boldsymbol{U}_{r^*}(\boldsymbol{A}_{t^*}) \right\|_{op} \lesssim \epsilon, w.h.p.$$

Figure 2: Left: the risk $\frac{1}{2} \| \boldsymbol{A}_t \boldsymbol{B}_t - \Delta \|_{\mathrm{F}}^2$. Right: the principal angle is $\min_t \| \boldsymbol{U}_{r^*,\perp}^{\mathsf{T}}(\boldsymbol{G}^{\natural}) \boldsymbol{U}_{r^*}(\boldsymbol{A}_t) \|_{op}$.

Figure 3: Principal angle of fine-tuning T5 on MRPC.

Key message: Algorithm design principle

Can we "escape" the alignment stage?

\circ Take the SVD of G^{\natural} : $G^{\natural} = \widetilde{U}_{G^{\natural}} \widetilde{S}_{G^{\natural}} \widetilde{V}_{G^{\natural}}$

$$\begin{split} \boldsymbol{A}_{0} &= \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{1}} \right]_{[:,1:r]} \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{1}}^{1/2} \right]_{[1:r]}. \\ \boldsymbol{B}_{0} &= \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{1}}^{1/2} \right]_{[1:r]} \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{1}} \right]_{[:,1:r]}^{\top}. \end{split}$$
(Spec-init.)

Message

If we choose (Spec-init.), for both linear/nonlinear models, we can directly achieve the alignment at initialization.

$$\|\boldsymbol{A}_{0}\boldsymbol{B}_{0} - \Delta\|_{\mathrm{F}} \leq \epsilon \|\Delta\|_{op}, \quad w.p. \ 1 - \exp(-\epsilon^{2}N)$$

The "best" initialization strategy

Key message: Algorithm design principle

Can we "escape" the alignment stage?

 \circ Take the SVD of $m{G}^{\natural}:\ m{G}^{\natural}=\widetilde{m{U}}_{m{G}^{\natural}}\widetilde{m{S}}_{m{G}^{\natural}}\widetilde{m{V}}_{m{G}^{\natural}}^{ op}$

$$\begin{split} \boldsymbol{A}_{0} &= \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{k}} \right]_{[:,1:r]} \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{k}}^{1/2} \right]_{[1:r]} \\ \boldsymbol{B}_{0} &= \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{k}}^{1/2} \right]_{[1:r]} \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{k}} \right]_{[:,1:r]}^{\mathsf{T}} . \end{split}$$
(Spec-init.)

Message

If we choose (Spec-init.), for both linear/nonlinear models, we can directly achieve the alignment at initialization.

$$\|\boldsymbol{A}_{0}\boldsymbol{B}_{0} - \Delta\|_{\mathrm{F}} \leq \epsilon \|\Delta\|_{op}, \quad w.p. \ 1 - \exp(-\epsilon^{2}N)$$

The "best" initialization strategy

Key message: Algorithm design principle

Can we "escape" the alignment stage?

Take the SVD of
$$\boldsymbol{G}^{\natural}$$
: $\boldsymbol{G}^{\natural} = \widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}} \widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}} \widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}}^{\top}$
 $\boldsymbol{A}_{0} = \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}}\right]_{[:,1:r]} \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}}^{1/2}\right]_{[1:r]}$.
 $\boldsymbol{B}_{0} = \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}}^{1/2}\right]_{[1:r]} \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}}\right]_{[:,1:r]}^{\top}$. (Spec-init.)

Message

If we choose (Spec-init.), for both linear/nonlinear models, we can directly achieve the alignment at initialization.

 $\|\boldsymbol{A}_{0}\boldsymbol{B}_{0} - \Delta\|_{\mathrm{F}} \leq \epsilon \|\Delta\|_{op}, \quad w.p. \ 1 - \exp(-\epsilon^{2}N)$

The "best" initialization strategy
Key message: Algorithm design principle

Can we "escape" the alignment stage?

• Take the SVD of
$$\boldsymbol{G}^{\natural}$$
: $\boldsymbol{G}^{\natural} = \widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}} \widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}} \widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}}^{\top}$
 $\boldsymbol{A}_{0} = \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}}\right]_{[:,1:r]} \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}}^{1/2}\right]_{[1:r]}$.
 $\boldsymbol{B}_{0} = \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}}^{1/2}\right]_{[1:r]} \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}}\right]_{[:,1:r]}^{\top}$. (Spec-init.)

Message

If we choose (Spec-init.), for both linear/nonlinear models, we can directly achieve the alignment at initialization.

$$\|oldsymbol{A}_0oldsymbol{B}_0 - \Delta\|_{ ext{F}} \leq \epsilon \|\Delta\|_{op}\,, \quad w.p. \; 1 - \exp(-\epsilon^2 N)$$

The "best" initialization strategy

Key message: Algorithm design principle

Can we "escape" the alignment stage?

$$\circ \text{ Take the SVD of } \boldsymbol{G}^{\natural}: \ \boldsymbol{G}^{\natural} = \widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}} \widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}} \widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}}^{\top} \\ \boldsymbol{A}_{0} = \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}}\right]_{[:,1:r]} \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}}^{1/2}\right]_{[1:r]}. \\ \boldsymbol{B}_{0} = \left[\widetilde{\boldsymbol{S}}_{\boldsymbol{G}^{\natural}}^{1/2}\right]_{[1:r]} \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}}\right]_{[:,1:r]}^{\top}.$$
(Spec-init.)

Message

If we choose (Spec-init.), for both linear/nonlinear models, we can directly achieve the alignment at initialization.

$$\|oldsymbol{A}_0oldsymbol{B}_0 - \Delta\|_{ ext{F}} \leq \epsilon \|\Delta\|_{op}\,, \quad w.p. \; 1 - \exp(-\epsilon^2 N)$$

The "best" initialization strategy!

Toy example (I)

Figure 4: Comparison of the GD trajectories between LoRA and ours. (a) and (b): $A \in \mathbb{R}^2$ and $B \in \mathbb{R}$ with different initializations. The set of global minimizers is $\{a_1^* = 2/t, a_2^* = 1/t, b^* = t \mid t \in \mathbb{R}\}$.

Figure 5: Comparison of the GD trajectories between LoRA and ours. We use two-layer neural networks pre-trained on odd-labeled data and fine-tuned on even-labeled data on MNIST.

Toy example (III): Phase portrait

One-step full gradient may suffice for low-rank fine-tuning!

Table 1: Fine-tuning T5 model across NLP tasks from GLUE.

Dataset	MNLI	SST-2	CoLA	QNLI	MRPC
Size	393k	67k	8.5k	105k	3.7k
Pre-trained	-	89.79	59.03	49.28	63.48
One-step GD		90.48	73.00	76.64	<mark>68.38</mark>
LoRA ₈	$85.30_{\pm0.04}$	$94.04_{\pm0.09}$	$72.84_{\pm 1.25}$	$93.02_{\pm0.07}$	$68.38_{\pm0.01}$

Time cost

- **CoLA** LoRA: 47s, one-step: <1s
- MRPC LoRA: 25s, one-step: <1s

One-step full gradient may suffice for low-rank fine-tuning!

Table 1: Fine-tuning T5 model across NLP tasks from GLUE.

Dataset	MNLI	SST-2	CoLA	QNLI	MRPC
Size	393k	67k	8.5k	105k	3.7k
Pre-trained	-	89.79	59.03	49.28	63.48
One-step GD		90.48	73.00	76.64	<mark>68.38</mark>
LoRA ₈	$85.30_{\pm0.04}$	$94.04_{\pm0.09}$	$72.84_{\pm 1.25}$	$93.02_{\pm0.07}$	$68.38_{\pm0.01}$

Time cost

- CoLA LoRA: 47s, one-step: <1s
- MRPC LoRA: 25s, one-step: <1s

Motivation [3]

make LoRA's gradients align to full fine-tuning!

 \circ best-2r approximation: rank($\nabla_{\boldsymbol{A}} \widetilde{L}(\boldsymbol{A}_t, \boldsymbol{B}_t)$) + rank($\nabla_{\boldsymbol{B}} \widetilde{L}(\boldsymbol{A}_t, \boldsymbol{B}_t)$) $\leq 2r$

$$\boldsymbol{A}_{0} \leftarrow \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{1}} \right]_{[:,1:r]}, \boldsymbol{B}_{0} \leftarrow \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{1}} \right]_{[:,r+1:2r]}^{\top}.$$
 (LoRA-GA)

 \circ But! $m{B}_t$ will align to the right-side rank- r^* singular subspace of $m{G}^{a}$.

Motivation [3]

make LoRA's gradients align to full fine-tuning!

 \circ best-2r approximation: rank($\nabla_{\boldsymbol{A}} \widetilde{L}(\boldsymbol{A}_t, \boldsymbol{B}_t)$) + rank($\nabla_{\boldsymbol{B}} \widetilde{L}(\boldsymbol{A}_t, \boldsymbol{B}_t)$) $\leq 2r$

$$\boldsymbol{A}_{0} \leftarrow \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}} \right]_{[:,1:r]}, \boldsymbol{B}_{0} \leftarrow \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}} \right]_{[:,r+1:2r]}^{\top}.$$
 (LoRA-GA)

 \circ But! $m{B}_t$ will align to the right-side rank- r^* singular subspace of $m{G}^{m{q}}$

Motivation [3]

make LoRA's gradients align to full fine-tuning!

 \circ best-2r approximation: rank($\nabla_{\boldsymbol{A}} \widetilde{L}(\boldsymbol{A}_t, \boldsymbol{B}_t)$) + rank($\nabla_{\boldsymbol{B}} \widetilde{L}(\boldsymbol{A}_t, \boldsymbol{B}_t)$) $\leq 2r$

$$\boldsymbol{A}_{0} \leftarrow \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}} \right]_{[:,1:r]}, \boldsymbol{B}_{0} \leftarrow \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}} \right]_{[:,r+1:2r]}^{\top}.$$
(LoRA-GA)

• But! \boldsymbol{B}_t will align to the right-side rank- r^* singular subspace of $\boldsymbol{G}^{\natural}$.

Clarification on gradient alignment based work

Motivation [3]

make LoRA's gradients align to full fine-tuning!

 \circ best-2r approximation: rank($\nabla_{\boldsymbol{A}} \widetilde{L}(\boldsymbol{A}_t, \boldsymbol{B}_t)$) + rank($\nabla_{\boldsymbol{B}} \widetilde{L}(\boldsymbol{A}_t, \boldsymbol{B}_t)$) $\leq 2r$

$$\boldsymbol{A}_{0} \leftarrow \left[\widetilde{\boldsymbol{U}}_{\boldsymbol{G}^{\natural}} \right]_{[:,1:r]}, \boldsymbol{B}_{0} \leftarrow \left[\widetilde{\boldsymbol{V}}_{\boldsymbol{G}^{\natural}} \right]_{[:,r+1:2r]}^{\top}.$$
(LoRA-GA)

• But! B_t will align to the right-side rank- r^* singular subspace of G^{\natural} .

Experiments

Algorithm 1 LoRA-One training for a specific layer

Input: Pre-trained weight W^{\natural} , batched data $\{\mathcal{D}_t\}_{t=1}^T$, LoRA rank r, LoRA alpha α . loss function L **Output:** $W^{\natural} + \frac{\alpha}{\sqrt{\tau}} A_T B_T$ Compute $\nabla_{\boldsymbol{W}} L(\boldsymbol{W}^{\natural})$ and $\boldsymbol{U}, \boldsymbol{S}, \boldsymbol{V} \leftarrow \text{SVD} (\nabla_{\boldsymbol{W}} L(\boldsymbol{W}^{\natural}))$ $oldsymbol{A}_0 \leftarrow \sqrt{\gamma} \cdot oldsymbol{U}_{[:,1:r]} oldsymbol{S}_{[:r,:r]}^{1/2}$ $\boldsymbol{B}_0 \leftarrow \sqrt{\gamma} \cdot \boldsymbol{S}_{[r,r]}^{1/2} \boldsymbol{V}_{[r,1;r]}^{\top}$ Clear $\nabla_{W} L(W^{\natural})$ for $t = 1, \ldots, T$ do $\mathbf{G}_{t}^{\mathbf{A}} \leftarrow \nabla_{\mathbf{A}} \widetilde{\mathcal{L}}(\mathbf{A}_{t-1}, \mathbf{B}_{t-1}) \left(\mathbf{B}_{t-1} \mathbf{B}_{t-1}^{\top} + \lambda \mathbf{I}_{r} \right)^{-1} \\
 \mathbf{G}_{t}^{\mathbf{B}} \leftarrow \left(\mathbf{A}_{t-1}^{\top} \mathbf{A}_{t-1} + \lambda \mathbf{I}_{r} \right)^{-1} \nabla_{\mathbf{B}} \widetilde{\mathcal{L}}(\mathbf{A}_{t-1}, \mathbf{B}_{t-1}) \\
 \text{Update } \mathbf{A}_{t}, \mathbf{B}_{t} \leftarrow \text{AdamW} \left(\mathbf{G}_{t}^{\mathbf{A}}, \mathbf{G}_{t}^{\mathbf{B}} \right)$

end

Method	MNLI	SST-2	CoLA	QNLI	MRPC
LoRA	$85.30_{\pm0.04}$	$94.04_{\pm0.09}$	$72.84_{\pm 1.25}$	$93.02_{\pm0.07}$	$68.38_{\pm0.01}$
LoRA+	$85.81_{\pm 0.09}$	$93.85_{\pm0.24}$	$77.53_{\pm0.20}$	$93.14_{\pm 0.03}$	$74.43_{\pm1.39}$
P-LoRA	$85.28_{\pm 0.15}$	$93.88_{\pm0.11}$	$79.58_{\pm0.67}$	$93.00_{\pm0.07}$	$83.91_{\pm 1.16}$
PiSSA	$85.75_{\pm 0.07}$	$94.07_{\pm0.06}$	$74.27_{\pm0.39}$	$93.15_{\pm0.14}$	$76.31_{\pm0.51}$
LoRA-GA	$85.70_{\pm 0.09}$	$94.11_{\pm0.18}$	$80.57_{\pm 0.20}$	$93.18_{\pm0.06}$	$85.29_{\pm0.24}$
LoRA-Pro	$\textbf{86.03}_{\pm 0.19}$	$94.19_{\pm0.13}$	$81.94_{\pm0.24}$	$\textbf{93.42}_{\pm 0.05}$	$86.60_{\pm 0.14}$
LoRA-One	$85.89_{\pm 0.08}$	$\textbf{94.53}_{\pm 0.13}$	$\textbf{82.04}_{\pm 0.22}$	$93.37_{\pm0.02}$	$\textbf{87.83}_{\pm 0.37}$

	GSM8K		MMLU	HumanEval
(r = 8)	Direct	8s-CoT	Avg.	PASS@1
LoRA	$59.26_{\pm0.76}$	$53.36_{\pm0.77}$	$45.73_{\pm0.30}$	$25.85_{\pm 1.75}$
LoRA-GA	$56.44_{\pm1.37}$	$46.07_{\pm 1.01}$	$45.70_{\pm 0.77}$	$26.95_{\pm1.30}$
LoRA-One	$\textbf{60.44}_{\pm 0.17}$	$\textbf{55.88}_{\pm 0.44}$	$\textbf{47.12}_{\pm 0.12}$	$\textbf{28.66}_{\pm 0.39}$

- One epoch, rank 8, three runs
- Hyperparameter optimized over learning rate, batch size
- Train: 100k subset from MetaMathQA
- Test: GSM8K, Accuracy (%)

	GSM8K		MMLU	HumanEval
(<i>r</i> = 8)	Direct	8s-CoT	Avg.	PASS@1
LoRA	$59.26_{\pm0.76}$	$53.36_{\pm0.77}$	$45.73_{\pm0.30}$	$25.85_{\pm 1.75}$
LoRA-GA	$56.44_{\pm 1.37}$	$46.07_{\pm 1.01}$	$45.70_{\pm 0.77}$	$26.95_{\pm1.30}$
LoRA-One	$\textbf{60.44}_{\pm 0.17}$	$\textbf{55.88}_{\pm 0.44}$	$\textbf{47.12}_{\pm 0.12}$	$\textbf{28.66}_{\pm 0.39}$

- One epoch, rank 8, three runs
- Hyperparameter optimized over learning rate, batch size
- Train: 100k subset from MetaMathQA
- Test: GSM8K, Accuracy (%)

LoRA: 6h 20min

+ 3 mir

	GSM8K		MMLU	HumanEval
(<i>r</i> = 8)	Direct	8s-CoT	Avg.	PASS@1
LoRA	$59.26_{\pm0.76}$	$53.36_{\pm0.77}$	$45.73_{\pm0.30}$	$25.85_{\pm 1.75}$
LoRA-GA	$56.44_{\pm 1.37}$	$46.07_{\pm 1.01}$	$45.70_{\pm 0.77}$	$26.95_{\pm1.30}$
LoRA-One	$\textbf{60.44}_{\pm 0.17}$	$\textbf{55.88}_{\pm 0.44}$	$\textbf{47.12}_{\pm 0.12}$	$\textbf{28.66}_{\pm 0.39}$

- One epoch, rank 8, three runs
- Hyperparameter optimized over learning rate, batch size
- Train: 100k subset from MetaMathQA
- Test: GSM8K, Accuracy (%)

LoRA: 21.6 GB + 0.1 GB

	GSM8K		MMLU	HumanEval
(r = 8)	Direct	8s-CoT	Avg.	PASS@1
LoRA	$59.26_{\pm0.76}$	$53.36_{\pm0.77}$	$45.73_{\pm0.30}$	$25.85_{\pm 1.75}$
LoRA-GA	$56.44_{\pm1.37}$	$46.07_{\pm 1.01}$	$45.70_{\pm0.77}$	$26.95_{\pm1.30}$
LoRA-One	$\textbf{60.44}_{\pm 0.17}$	$\textbf{55.88}_{\pm 0.44}$	$\textbf{47.12}_{\pm 0.12}$	$\textbf{28.66}_{\pm 0.39}$

- One epoch, rank 8, three runs
- Hyperparameter optimized over learning rate, batch size
- Train: 100k subset from Code-Feedback
- Test: Humaneval, Pass@1

	GSM8K		MMLU	HumanEval
(r = 8)	Direct	8s-CoT	Avg.	PASS@1
LoRA	$59.26_{\pm0.76}$	$53.36_{\pm0.77}$	$45.73_{\pm0.30}$	$25.85_{\pm 1.75}$
LoRA-GA	$56.44_{\pm1.37}$	$46.07_{\pm 1.01}$	$45.70_{\pm 0.77}$	$26.95_{\pm1.30}$
LoRA-One	$\textbf{60.44}_{\pm 0.17}$	$\textbf{55.88}_{\pm 0.44}$	$\textbf{47.12}_{\pm 0.12}$	$\textbf{28.66}_{\pm 0.39}$

- One epoch, rank 8, three runs
- Hyperparameter optimized over learning rate, batch size
- Train: 100k subset from Code-Feedback
- Test: Humaneval, Pass@1

LoRA: 6h 24 min

+ 2 min

	GSM8K		MMLU	HumanEval
(r = 8)	Direct	8s-CoT	Avg.	PASS@1
LoRA	$59.26_{\pm0.76}$	$53.36_{\pm0.77}$	$45.73_{\pm0.30}$	$25.85_{\pm 1.75}$
LoRA-GA	$56.44_{\pm1.37}$	$46.07_{\pm 1.01}$	$45.70_{\pm 0.77}$	$26.95_{\pm1.30}$
LoRA-One	$\textbf{60.44}_{\pm 0.17}$	$\textbf{55.88}_{\pm 0.44}$	$\textbf{47.12}_{\pm 0.12}$	$\textbf{28.66}_{\pm 0.39}$

- One epoch, rank 8, three runs
- Hyperparameter optimized over learning rate, batch size
- Train: 100k subset from Code-Feedback
- Test: Humaneval, Pass@1

LoRA: 22.6 GB - 1.1 GB

Figure 7: Accuracy comparison across different methods over epochs on GSM8K.

Theory and proof...

Model	Algorithm	Initialization	Results
	GD	(LoRA-init.)	Subspace alignment of ${m B}_t$
	GD	(LoRA-init.)	Subspace alignment of \boldsymbol{A}_t
Linear	GD	(Spec-init.)	$\ oldsymbol{A}_0oldsymbol{B}_0-\Delta\ _{ ext{F}}$ is small
	GD	(Spec-init.)	Linear convergence of $\ oldsymbol{A}_toldsymbol{B}_t-\Delta\ _{ ext{F}}$
	Precondition GD	(Spec-init.)	Linear convergence rate independent of $\kappa(\Delta)$
Nonlinear	Precondition GD	(Spec-init.)	Linear convergence rate independent of $\kappa(\Delta)$

- subspace alignment
- global convergence

Proof of sketch: Control the dynamics for alignment

$$\underbrace{\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^{\top} \end{bmatrix}}_{:=\boldsymbol{Z}_{t+1}} = \underbrace{\begin{bmatrix} \boldsymbol{I}_{d} & \eta_{1}\boldsymbol{G}^{\natural} \\ \eta_{2}\boldsymbol{G}^{\natural^{\top}} & \boldsymbol{I}_{k} \end{bmatrix}}_{:=\boldsymbol{H}} \underbrace{\begin{bmatrix} \boldsymbol{A}_{t} \\ \boldsymbol{B}_{t}^{\top} \end{bmatrix}}_{:=\boldsymbol{Z}_{t}} - \frac{1}{N} \begin{bmatrix} \boldsymbol{0} & \eta_{1}\tilde{\boldsymbol{X}}^{\top}\tilde{\boldsymbol{X}}\boldsymbol{A}_{t}\boldsymbol{B}_{t} \\ \eta_{2}\boldsymbol{B}_{t}^{\top}\boldsymbol{A}_{t}^{\top}\tilde{\boldsymbol{X}}^{\top}\tilde{\boldsymbol{X}} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_{t} \\ \boldsymbol{B}_{t}^{\top} \end{bmatrix}$$

• Approximated linear dynamical system $Z_t^{\text{lin}} := H^t Z_0$

- Schur decomposition of *H*
- obtain the dynamics of Z^{lin}_t (decouple A^{lin}_t and B^{lin}_t and obtain the alignment to G<sup>^¹)
 </sup>
- Define the residual term $\boldsymbol{E}_t := \boldsymbol{Z}_t \boldsymbol{Z}_t^{\text{lin}}$, control $\|\boldsymbol{E}_t\|_{op}$ in early stage $t < T_1 \sim \ln\left(\frac{\|\boldsymbol{G}^1\|_{op}}{\|\boldsymbol{A}_0\|_{op}^2}\right)$

 \circ Transfer the alignment from $A_t^{ ext{lin}}$ to A_t [2] (Stöger & Soltanolkotabi) $\|U_{r^*,\perp}^{ op}(G^{\natural})U_{r^*}(A_t)\|_{op} \lesssim \|U_{r^*,\perp}^{ op}(P_t^A)U_{r^*}(P_t^AA_0 + E_t)\|_{op}$ is small, w.h.p.

Proof of sketch: Control the dynamics for alignment

$$\underbrace{\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^{\top} \end{bmatrix}}_{:=\boldsymbol{Z}_{t+1}} = \underbrace{\begin{bmatrix} \boldsymbol{I}_{d} & \eta_{1}\boldsymbol{G}^{\natural} \\ \eta_{2}\boldsymbol{G}^{\natural^{\top}} & \boldsymbol{I}_{k} \end{bmatrix}}_{:=\boldsymbol{H}} \underbrace{\begin{bmatrix} \boldsymbol{A}_{t} \\ \boldsymbol{B}_{t}^{\top} \end{bmatrix}}_{:=\boldsymbol{Z}_{t}} - \frac{1}{N} \begin{bmatrix} \boldsymbol{0} & \eta_{1}\tilde{\boldsymbol{X}}^{\top}\tilde{\boldsymbol{X}}\boldsymbol{A}_{t}\boldsymbol{B}_{t} \\ \eta_{2}\boldsymbol{B}_{t}^{\top}\boldsymbol{A}_{t}^{\top}\tilde{\boldsymbol{X}}^{\top}\tilde{\boldsymbol{X}} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_{t} \\ \boldsymbol{B}_{t}^{\top} \end{bmatrix}$$

 \circ Approximated linear dynamical system $m{Z}_t^{ t lin} := m{H}^t m{Z}_0$

- Schur decomposition of *H*
- obtain the dynamics of Z_t^{lin} (decouple A_t^{lin} and B_t^{lin} and obtain the alignment to G^{\natural})
- Define the residual term $\boldsymbol{E}_t := \boldsymbol{Z}_t \boldsymbol{Z}_t^{\text{lin}}$, control $\|\boldsymbol{E}_t\|_{op}$ in early stage $t < T_1 \sim \ln\left(\frac{\|\boldsymbol{G}^{\natural}\|_{op}}{\|\boldsymbol{A}_0\|_{op}^2}\right)$

Transfer the alignment from A_t^{lin} to A_t [2] (Stöger & Soltanolkotabi) $\|U_{r^*,\perp}^{\mathsf{T}}(G^{\natural})U_{r^*}(A_t)\|_{op} \lesssim \|U_{r^*,\perp}^{\mathsf{T}}(P_t^{\mathsf{A}})U_{r^*}(P_t^{\mathsf{A}}A_0 + E_t)\|_{op}$ is small, w.h.p.

Proof of sketch: Control the dynamics for alignment

$$\underbrace{\begin{bmatrix} \boldsymbol{A}_{t+1} \\ \boldsymbol{B}_{t+1}^{\top} \end{bmatrix}}_{:=\boldsymbol{Z}_{t+1}} = \underbrace{\begin{bmatrix} \boldsymbol{I}_{d} & \eta_{1}\boldsymbol{G}^{\natural} \\ \eta_{2}\boldsymbol{G}^{\natural^{\top}} & \boldsymbol{I}_{k} \end{bmatrix}}_{:=\boldsymbol{H}} \underbrace{\begin{bmatrix} \boldsymbol{A}_{t} \\ \boldsymbol{B}_{t}^{\top} \end{bmatrix}}_{:=\boldsymbol{Z}_{t}} - \frac{1}{N} \begin{bmatrix} \boldsymbol{0} & \eta_{1}\tilde{\boldsymbol{X}}^{\top}\tilde{\boldsymbol{X}}\boldsymbol{A}_{t}\boldsymbol{B}_{t} \\ \eta_{2}\boldsymbol{B}_{t}^{\top}\boldsymbol{A}_{t}^{\top}\tilde{\boldsymbol{X}}^{\top}\tilde{\boldsymbol{X}} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{A}_{t} \\ \boldsymbol{B}_{t}^{\top} \end{bmatrix}$$

 \circ Approximated linear dynamical system $\boldsymbol{Z}_t^{\mathtt{lin}} := \boldsymbol{H}^t \boldsymbol{Z}_0$

- Schur decomposition of *H*
- obtain the dynamics of Z_t^{lin} (decouple A_t^{lin} and B_t^{lin} and obtain the alignment to G^{\natural})
- Define the residual term $\boldsymbol{E}_t := \boldsymbol{Z}_t \boldsymbol{Z}_t^{\text{lin}}$, control $\|\boldsymbol{E}_t\|_{op}$ in early stage $t < T_1 \sim \ln\left(\frac{\|\boldsymbol{G}^{\natural}\|_{op}}{\|\boldsymbol{A}_0\|_{op}^2}\right)$

•Transfer the alignment from $\boldsymbol{A}_t^{\text{lin}}$ to \boldsymbol{A}_t [2] (Stöger & Soltanolkotabi) $\|\boldsymbol{U}_{r^*,\perp}^{\top}(\boldsymbol{G}^{\natural})\boldsymbol{U}_{r^*}(\boldsymbol{A}_t)\|_{op} \lesssim \|\boldsymbol{U}_{r^*,\perp}^{\top}(\boldsymbol{P}_t^{\boldsymbol{A}})\boldsymbol{U}_{r^*}(\boldsymbol{P}_t^{\boldsymbol{A}}\boldsymbol{A}_0 + \boldsymbol{E}_t)\|_{op}$ is small, w.h.p. Global convergence on nonlinear models

- $\circ \text{ Pre-trained model } f_{\rm pre}(\textbf{\textit{x}}) = \sigma[(\textbf{\textit{x}}^{\top} \textbf{\textit{W}}^{\natural})^{\top}] \in \mathbb{R}^k$
- Unknown low-rank feature shift Δ : $\widetilde{\boldsymbol{W}}^{\natural} := \boldsymbol{W}^{\natural} + \Delta$ with $\operatorname{Rank}(\Delta) = r^*$ • We assume $r = r^*$.
- $\circ \text{ Downstream well-behaved data } \widetilde{\boldsymbol{y}} = \sigma[(\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{W}}^{\natural})^{\top}], \ \{\widetilde{\boldsymbol{x}}_i\}_{i=1}^{N} \overset{i.i.d.}{\sim} \mathcal{N}(0, \boldsymbol{I}_d)$

training loss

$$\widetilde{L}(\boldsymbol{A},\boldsymbol{B}) := \frac{1}{2N} \left\| \sigma \left(\widetilde{\boldsymbol{X}} (\boldsymbol{W}^{\natural} + \boldsymbol{A} \boldsymbol{B}) \right) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2}.$$

gradient updates

$$abla_{\boldsymbol{A}}\widetilde{\boldsymbol{L}}(\boldsymbol{A}_t\,,\boldsymbol{B}_t)=-\boldsymbol{J}_{\boldsymbol{W}_t}\boldsymbol{B}_t^{\top},\quad
abla_{\boldsymbol{B}}\widetilde{\boldsymbol{L}}(\boldsymbol{A}_t\,,\boldsymbol{B}_t)=-\boldsymbol{A}_t^{\top}\boldsymbol{J}_{\boldsymbol{W}_t}\,,$$

where we define

$$\boldsymbol{J}_{\boldsymbol{W}_t} := \frac{1}{N} \widetilde{\boldsymbol{X}}^\top \left[\sigma(\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}}^{\natural}) - \frac{1}{N} \widetilde{\boldsymbol{X}}^\top \sigma(\widetilde{\boldsymbol{X}} \boldsymbol{W}_t) \right] \odot \sigma'(\widetilde{\boldsymbol{X}} \boldsymbol{W}_t) \,.$$

 \circ additional assumptions on $\widetilde{oldsymbol{W}}^{ heta},$ e.g., adapted weight has smaller signal than pre-trained model

- $\circ \text{ Pre-trained model } f_{\rm pre}(\textbf{\textit{x}}) = \sigma[(\textbf{\textit{x}}^{\top} \textbf{\textit{W}}^{\natural})^{\top}] \in \mathbb{R}^k$
- Unknown low-rank feature shift Δ : $\widetilde{\boldsymbol{W}}^{\natural} := \boldsymbol{W}^{\natural} + \Delta$ with $\operatorname{Rank}(\Delta) = r^*$ • We assume $r = r^*$.
- $\circ \text{ Downstream well-behaved data } \widetilde{\boldsymbol{y}} = \sigma[(\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{W}}^{\natural})^{\top}], \ \{\widetilde{\boldsymbol{x}}_i\}_{i=1}^N \overset{i.i.d.}{\sim} \mathcal{N}(0, \boldsymbol{I}_d)$
- \circ training loss

$$\widetilde{L}(\boldsymbol{A},\boldsymbol{B}):=\frac{1}{2N}\left\|\sigma\left(\widetilde{\boldsymbol{X}}(\boldsymbol{W}^{\natural}+\boldsymbol{A}\boldsymbol{B})\right)-\widetilde{\boldsymbol{Y}}\right\|_{\mathrm{F}}^{2}.$$

gradient updates

$$abla_{\boldsymbol{A}}\widetilde{\boldsymbol{L}}(\boldsymbol{A}_t\,,\boldsymbol{B}_t)=-\boldsymbol{J}_{\boldsymbol{W}_t}\boldsymbol{B}_t^{\top},\quad
abla_{\boldsymbol{B}}\widetilde{\boldsymbol{L}}(\boldsymbol{A}_t\,,\boldsymbol{B}_t)=-\boldsymbol{A}_t^{\top}\boldsymbol{J}_{\boldsymbol{W}_t}\,,$$

where we define

$$\boldsymbol{J}_{\boldsymbol{W}_t} := \frac{1}{N} \widetilde{\boldsymbol{X}}^\top \left[\sigma(\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}}^{\natural}) - \frac{1}{N} \widetilde{\boldsymbol{X}}^\top \sigma(\widetilde{\boldsymbol{X}} \boldsymbol{W}_t) \right] \odot \sigma'(\widetilde{\boldsymbol{X}} \boldsymbol{W}_t) \,.$$

 \circ additional assumptions on $\widetilde{oldsymbol{W}}^{ heta},$ e.g., adapted weight has smaller signal than pre-trained model

- $\circ \text{ Pre-trained model } f_{\rm pre}(\textbf{\textit{x}}) = \sigma[(\textbf{\textit{x}}^{\top} \textbf{\textit{W}}^{\natural})^{\top}] \in \mathbb{R}^k$
- Unknown low-rank feature shift Δ : $\widetilde{\boldsymbol{W}}^{\natural} := \boldsymbol{W}^{\natural} + \Delta$ with $\operatorname{Rank}(\Delta) = r^*$ • We assume $r = r^*$.
- $\circ \text{ Downstream well-behaved data } \widetilde{\boldsymbol{y}} = \sigma[(\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{W}}^{\natural})^{\top}], \ \{\widetilde{\boldsymbol{x}}_i\}_{i=1}^N \overset{i.i.d.}{\sim} \mathcal{N}(0, \boldsymbol{I}_d)$

 \circ training loss

$$\widetilde{L}(\boldsymbol{A},\boldsymbol{B}) := \frac{1}{2N} \left\| \sigma \left(\widetilde{\boldsymbol{X}} (\boldsymbol{W}^{\natural} + \boldsymbol{A} \boldsymbol{B}) \right) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2}.$$

o gradient updates

$$abla_{\boldsymbol{A}}\widetilde{L}(\boldsymbol{A}_t\,,\boldsymbol{B}_t)=-\boldsymbol{J}_{\boldsymbol{W}_t}\boldsymbol{B}_t^{ op},\quad
abla_{\boldsymbol{B}}\widetilde{L}(\boldsymbol{A}_t\,,\boldsymbol{B}_t)=-\boldsymbol{A}_t^{ op}\boldsymbol{J}_{\boldsymbol{W}_t}\,,$$

where we define

$$\boldsymbol{J}_{\boldsymbol{W}_t} := \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} \left[\sigma(\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}}^{\natural}) - \frac{1}{N} \widetilde{\boldsymbol{X}}^{\top} \sigma(\widetilde{\boldsymbol{X}} \boldsymbol{W}_t) \right] \odot \sigma'(\widetilde{\boldsymbol{X}} \boldsymbol{W}_t) \,.$$

 \circ additional assumptions on $\widetilde{oldsymbol{W}}^4$, e.g., adapted weight has smaller signal than pre-trained model

- $\circ \text{ Pre-trained model } f_{\rm pre}(\textbf{\textit{x}}) = \sigma[(\textbf{\textit{x}}^{\top} \textbf{\textit{W}}^{\natural})^{\top}] \in \mathbb{R}^k$
- Unknown low-rank feature shift Δ : $\widetilde{\boldsymbol{W}}^{\natural} := \boldsymbol{W}^{\natural} + \Delta$ with $\operatorname{Rank}(\Delta) = r^*$ • We assume $r = r^*$.
- $\circ \text{ Downstream well-behaved data } \widetilde{\boldsymbol{y}} = \sigma[(\widetilde{\boldsymbol{x}}^{\top} \widetilde{\boldsymbol{W}}^{\natural})^{\top}], \ \{\widetilde{\boldsymbol{x}}_i\}_{i=1}^N \overset{i.i.d.}{\sim} \mathcal{N}(0, \boldsymbol{I}_d)$

 \circ training loss

$$\widetilde{L}(\boldsymbol{A},\boldsymbol{B}) := \frac{1}{2N} \left\| \sigma \left(\widetilde{\boldsymbol{X}} (\boldsymbol{W}^{\natural} + \boldsymbol{A} \boldsymbol{B}) \right) - \widetilde{\boldsymbol{Y}} \right\|_{\mathrm{F}}^{2}.$$

o gradient updates

$$abla_{\boldsymbol{A}}\widetilde{L}(\boldsymbol{A}_t\,,\boldsymbol{B}_t)=-\boldsymbol{J}_{\boldsymbol{W}_t}\boldsymbol{B}_t^{ op},\quad
abla_{\boldsymbol{B}}\widetilde{L}(\boldsymbol{A}_t\,,\boldsymbol{B}_t)=-\boldsymbol{A}_t^{ op}\boldsymbol{J}_{\boldsymbol{W}_t}\,,$$

where we define

$$\boldsymbol{J}_{\boldsymbol{W}_t} := \frac{1}{N} \widetilde{\boldsymbol{X}}^\top \left[\sigma(\widetilde{\boldsymbol{X}} \widetilde{\boldsymbol{W}}^{\natural}) - \frac{1}{N} \widetilde{\boldsymbol{X}}^\top \sigma(\widetilde{\boldsymbol{X}} \boldsymbol{W}_t) \right] \odot \sigma'(\widetilde{\boldsymbol{X}} \boldsymbol{W}_t).$$

 \circ additional assumptions on $\widetilde{\textit{W}}^{\natural}$, e.g., adapted weight has smaller signal than pre-trained model

Theorem (Linear convergence rate)

$$\left\|oldsymbol{A}_toldsymbol{B}_t - \Delta
ight\|_{ extsf{F}} \lesssim \left(1 - rac{\eta}{4}
ight)^t \lambda_{r^*}(\Delta), w.h.p$$

$$\left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-\boldsymbol{\Delta}\right\|_{op} \leq \left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-2\boldsymbol{G}^{\sharp}\right\|_{op}+2\left\|\boldsymbol{G}^{\sharp}-\mathbb{E}_{\widetilde{\boldsymbol{X}}}\left[\boldsymbol{G}^{\sharp}\right]\right\|_{op}+\left\|2\mathbb{E}_{\widetilde{\boldsymbol{X}}}\left[\boldsymbol{G}^{\sharp}\right]-\boldsymbol{\Delta}\right\|_{op}\right\|_{op}$$

- low-rank approximation error $\leq 2\lambda_{r^*+1}(\boldsymbol{G}^{\natural})$
- population error: using $\mathbb{E}_{\widetilde{\mathbf{x}}}[-J_{W_t}] = \frac{1}{2}(\boldsymbol{A}_t \boldsymbol{B}_t \Delta) + \mathcal{O}(\frac{1}{\kappa r^*})$
- concentration error

$$\left\| \boldsymbol{J}_{\boldsymbol{W}_{t}} - \mathbb{E}_{\widetilde{\boldsymbol{X}}}[\boldsymbol{J}_{\boldsymbol{W}_{t}}] \right\|_{\mathrm{F}} \lesssim \sqrt{d} \epsilon \| \boldsymbol{A}_{t} \boldsymbol{B}_{t} - \Delta \|_{\mathrm{F}}, w.h.p. \Rightarrow \operatorname{control} \boldsymbol{G}^{\natural}$$

Theorem (Linear convergence rate)

$$\left\|oldsymbol{A}_toldsymbol{B}_t - \Delta
ight\|_{ extsf{F}} \lesssim \left(1 - rac{\eta}{4}
ight)^t \lambda_{r^*}(\Delta), w.h.p$$

$$\left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-\boldsymbol{\Delta}\right\|_{op} \leq \left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-2\boldsymbol{G}^{\natural}\right\|_{op}+2\left\|\boldsymbol{G}^{\natural}-\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]\right\|_{op}+\left\|2\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]-\boldsymbol{\Delta}\right\|_{op}$$

- low-rank approximation error $\leq 2\lambda_{r^*+1}({old G}^{lat})$
- population error: using $\mathbb{E}_{\widetilde{\mathbf{x}}}[-J_{W_t}] = \frac{1}{2}(\mathbf{A}_t \mathbf{B}_t \Delta) + \mathcal{O}(\frac{1}{\kappa r^*})$
- concentration error

$$\left\| \boldsymbol{J}_{\boldsymbol{W}_{t}} - \mathbb{E}_{\widetilde{\boldsymbol{X}}}[\boldsymbol{J}_{\boldsymbol{W}_{t}}] \right\|_{\mathrm{F}} \lesssim \sqrt{d} \epsilon \| \boldsymbol{A}_{t} \boldsymbol{B}_{t} - \Delta \|_{\mathrm{F}}, w.h.p. \Rightarrow \operatorname{control} \boldsymbol{G}^{\natural}$$

Theorem (Linear convergence rate)

$$\left\|oldsymbol{A}_toldsymbol{B}_t - \Delta
ight\|_{ extsf{F}} \lesssim \left(1 - rac{\eta}{4}
ight)^t \lambda_{r^*}(\Delta), w.h.p$$

$$\left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-\boldsymbol{\Delta}\right\|_{op} \leq \left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-2\boldsymbol{G}^{\natural}\right\|_{op}+2\left\|\boldsymbol{G}^{\natural}-\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]\right\|_{op}+\left\|2\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]-\boldsymbol{\Delta}\right\|_{op}\right\|_{op}$$

- low-rank approximation error $\leq 2\lambda_{r^*+1}(\boldsymbol{G}^{\natural})$
- population error: using $\mathbb{E}_{\widetilde{\mathbf{X}}}[-\boldsymbol{J}_{\boldsymbol{W}_t}] = \frac{1}{2}(\boldsymbol{A}_t \boldsymbol{B}_t \Delta) + \mathcal{O}(\frac{1}{\kappa r^*})$
- concentration error

$$\left\| \boldsymbol{J}_{\boldsymbol{W}_{t}} - \mathbb{E}_{\widetilde{\boldsymbol{X}}}[\boldsymbol{J}_{\boldsymbol{W}_{t}}] \right\|_{\mathrm{F}} \lesssim \sqrt{d} \epsilon \| \boldsymbol{A}_{t} \boldsymbol{B}_{t} - \Delta \|_{\mathrm{F}}, w.h.p. \Rightarrow \text{control} \boldsymbol{G}^{\natural}$$

Theorem (Linear convergence rate)

$$\left\|oldsymbol{A}_toldsymbol{B}_t - \Delta
ight\|_{ extsf{F}} \lesssim \left(1 - rac{\eta}{4}
ight)^t \lambda_{r^*}(\Delta), w.h.p$$

$$\left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-\boldsymbol{\Delta}\right\|_{op} \leq \left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-2\boldsymbol{G}^{\natural}\right\|_{op}+2\left\|\boldsymbol{G}^{\natural}-\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]\right\|_{op}+\left\|2\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]-\boldsymbol{\Delta}\right\|_{op}\right\|_{op}$$

- low-rank approximation error $\leq 2\lambda_{r^*+1}(\boldsymbol{G}^{\natural})$
- population error: using $\mathbb{E}_{\tilde{x}}[-J_{W_t}] = \frac{1}{2}(A_tB_t \Delta) + \mathcal{O}(\frac{1}{\kappa r^*})$
- concentration error

$$\left\| \boldsymbol{J}_{\boldsymbol{W}_{t}} - \mathbb{E}_{\widetilde{\boldsymbol{X}}}[\boldsymbol{J}_{\boldsymbol{W}_{t}}] \right\|_{\mathrm{F}} \lesssim \sqrt{d} \epsilon \| \boldsymbol{A}_{t} \boldsymbol{B}_{t} - \Delta \|_{\mathrm{F}}, w.h.p. \Rightarrow \operatorname{control} \boldsymbol{G}^{\natural}$$

Theorem (Linear convergence rate)

$$\left\|oldsymbol{A}_toldsymbol{B}_t - \Delta
ight\|_{ extsf{F}} \lesssim \left(1 - rac{\eta}{4}
ight)^t \lambda_{r^*}(\Delta), w.h.p$$

$$\left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-\boldsymbol{\Delta}\right\|_{op} \leq \left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-2\boldsymbol{G}^{\natural}\right\|_{op}+2\left\|\boldsymbol{G}^{\natural}-\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]\right\|_{op}+\left\|2\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]-\boldsymbol{\Delta}\right\|_{op}\right\|_{op}$$

- low-rank approximation error $\leq 2\lambda_{r^*+1}(\boldsymbol{G}^{\natural})$
- population error: using $\mathbb{E}_{\tilde{\mathbf{x}}}[-\mathbf{J}_{\mathbf{W}_t}] = \frac{1}{2}(\mathbf{A}_t \mathbf{B}_t \Delta) + \mathcal{O}(\frac{1}{\kappa r^*})$
- concentration error

$$\left\| \boldsymbol{J}_{\boldsymbol{W}_{t}} - \mathbb{E}_{\widetilde{\boldsymbol{x}}}[\boldsymbol{J}_{\boldsymbol{W}_{t}}] \right\|_{\mathrm{F}} \lesssim \sqrt{d} \epsilon \| \boldsymbol{A}_{t} \boldsymbol{B}_{t} - \Delta \|_{\mathrm{F}}, w.h.p. \Rightarrow \text{control} \boldsymbol{G}$$
Global convergence

Theorem (Linear convergence rate)

Under (Spec-init.) and J_{W_t} for gradient update (adding preconditioners), choose constant step-size $\eta < 1$, we have

$$\left\|oldsymbol{A}_toldsymbol{B}_t - \Delta
ight\|_{ extsf{F}} \lesssim \left(1 - rac{\eta}{4}
ight)^t \lambda_{r^*}(\Delta), w.h.p$$

$$\left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-\boldsymbol{\Delta}\right\|_{op} \leq \left\|\boldsymbol{A}_{0}\boldsymbol{B}_{0}-2\boldsymbol{G}^{\natural}\right\|_{op}+2\left\|\boldsymbol{G}^{\natural}-\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]\right\|_{op}+\left\|2\mathbb{E}_{\widetilde{\boldsymbol{x}}}\left[\boldsymbol{G}^{\natural}\right]-\boldsymbol{\Delta}\right\|_{op}\right\|_{op}$$

- low-rank approximation error $\leq 2\lambda_{r^*+1}(\boldsymbol{G}^{\natural})$
- population error: using $\mathbb{E}_{\tilde{\mathbf{x}}}[-\mathbf{J}_{\mathbf{W}_t}] = \frac{1}{2}(\mathbf{A}_t \mathbf{B}_t \Delta) + \mathcal{O}(\frac{1}{\kappa r^*})$
- concentration error

$$\left\| \boldsymbol{J}_{\boldsymbol{W}_{t}} - \mathbb{E}_{\widetilde{\boldsymbol{x}}}[\boldsymbol{J}_{\boldsymbol{W}_{t}}] \right\|_{\mathrm{F}} \lesssim \sqrt{d} \epsilon \| \boldsymbol{A}_{t} \boldsymbol{B}_{t} - \Delta \|_{\mathrm{F}}, w.h.p. \Rightarrow \mathsf{control} \boldsymbol{G}^{\natural}$$

$$\begin{split} \|\boldsymbol{A}_{t+1}\boldsymbol{B}_{t+1} - \Delta\|_{\mathrm{F}} &\lesssim \|\boldsymbol{J}_{\boldsymbol{W}_{t}}^{\mathrm{GLM}} - \frac{1}{2}(\boldsymbol{A}_{t}\boldsymbol{B}_{t} - \Delta)\|_{\mathrm{F}} \left[\text{concentration+population} \right] \\ &+ (1 - \eta) \left\| \boldsymbol{U}_{\boldsymbol{A}_{t}}\boldsymbol{U}_{\boldsymbol{A}_{t}}^{\top}(\boldsymbol{A}_{t}\boldsymbol{B}_{t} - \Delta)\boldsymbol{V}_{\boldsymbol{B}_{t}}\boldsymbol{V}_{\boldsymbol{B}_{t}}^{\top} \right\|_{\mathrm{F}} \\ &+ \left\| \left(\boldsymbol{I}_{d} - \boldsymbol{U}_{\boldsymbol{A}_{t}}\boldsymbol{U}_{\boldsymbol{A}_{t}}^{\top} \right) (\boldsymbol{A}_{t}\boldsymbol{B}_{t} - \Delta) \left(\boldsymbol{I}_{k} - \boldsymbol{V}_{\boldsymbol{B}_{t}}\boldsymbol{V}_{\boldsymbol{B}_{t}}^{\top} \right) \right\|_{\mathrm{F}} \end{split}$$

 $+ \operatorname{cross} \operatorname{terms}$

$$\boldsymbol{L} = \begin{bmatrix} \boldsymbol{U}_{\boldsymbol{A}_t} & \boldsymbol{0}_{d \times r} \\ \boldsymbol{0}_{k \times r} & \boldsymbol{V}_{\boldsymbol{B}_t} \end{bmatrix} \in \mathbb{R}^{(d+k) \times 2r}$$

then $m{L}m{L}^ op$ is a projection matrix, $m{I}_{d+k} - m{L}m{L}^ op = m{L}_ot m{L}_ot^ op$

• transformed to lower bound $\left\| \boldsymbol{L}_{\perp}^{\top} \boldsymbol{\Delta} \boldsymbol{L} \right\|_{\mathrm{F}}^{2}$

 \circ upper bound $\left\|m{L}_{ot}^{ op}m{U}
ight\|_{op} < 1$ by Wedin's sin-heta theorem

$$\begin{split} \|\boldsymbol{A}_{t+1}\boldsymbol{B}_{t+1} - \Delta\|_{\mathrm{F}} &\lesssim \|\boldsymbol{J}_{\boldsymbol{W}_{t}}^{\mathrm{GLM}} - \frac{1}{2}(\boldsymbol{A}_{t}\boldsymbol{B}_{t} - \Delta)\|_{\mathrm{F}} \left[\text{concentration+population} \right] \\ &+ (1 - \eta) \left\| \boldsymbol{U}_{\boldsymbol{A}_{t}}\boldsymbol{U}_{\boldsymbol{A}_{t}}^{\top}(\boldsymbol{A}_{t}\boldsymbol{B}_{t} - \Delta)\boldsymbol{V}_{\boldsymbol{B}_{t}}\boldsymbol{V}_{\boldsymbol{B}_{t}}^{\top} \right\|_{\mathrm{F}} \\ &+ \left\| \left(\boldsymbol{I}_{d} - \boldsymbol{U}_{\boldsymbol{A}_{t}}\boldsymbol{U}_{\boldsymbol{A}_{t}}^{\top} \right) (\boldsymbol{A}_{t}\boldsymbol{B}_{t} - \Delta) \left(\boldsymbol{I}_{k} - \boldsymbol{V}_{\boldsymbol{B}_{t}}\boldsymbol{V}_{\boldsymbol{B}_{t}}^{\top} \right) \right\|_{\mathrm{F}} \end{split}$$

+ cross terms

$$\boldsymbol{L} = \begin{bmatrix} \boldsymbol{U}_{\boldsymbol{A}_t} & \boldsymbol{0}_{d \times r} \\ \boldsymbol{0}_{k \times r} & \boldsymbol{V}_{\boldsymbol{B}_t} \end{bmatrix} \in \mathbb{R}^{(d+k) \times 2r},$$

 \circ transformed to lower bound $\left\| \boldsymbol{L}_{\perp}^{\top} \boldsymbol{\Delta} \boldsymbol{L} \right\|_{F}^{2}$

 \circ upper bound $\left\| m{L}_{ot}^{ op} m{U}
ight\|_{op} < 1$ by Wedin's sin-heta theorem

Takeaway messages

• LoRA-One: One-step full gradient could suffice for fine-tuning large language models, provably and efficiently. ICML'25 spotlight. code

- subspace alignment: $\boldsymbol{G}^{\natural}$ and $(\boldsymbol{A}_t, \boldsymbol{B}_t) \Rightarrow$ theory-grounded algorithm design
- "optimal" non-zero initialization strategy
- clarification on gradient alignment based algorithms

Farget

- How to handle nonlinearity at a theoretical level (e.g., training dynamics)
- How to precisely and efficiently approximate nonlinearity at a practical level under theoretical guidelines

Thank you! fanghui.liu@warwick.ac.uk www.lfhsgre.org

Takeaway messages

• LoRA-One: One-step full gradient could suffice for fine-tuning large language models, provably and efficiently. ICML'25 spotlight. code

- subspace alignment: $\boldsymbol{G}^{\natural}$ and $(\boldsymbol{A}_t, \boldsymbol{B}_t) \Rightarrow$ theory-grounded algorithm design
- "optimal" non-zero initialization strategy
- clarification on gradient alignment based algorithms

Target

- How to handle **nonlinearity** at a theoretical level (e.g., training dynamics)
- How to precisely and efficiently approximate **nonlinearity** at a practical level under theoretical guidelines

Thank you! fanghui.liu@warwick.ac.uk www.lfhsgre.org

Takeaway messages

• LoRA-One: One-step full gradient could suffice for fine-tuning large language models, provably and efficiently. ICML'25 spotlight. code

- subspace alignment: $\boldsymbol{G}^{\natural}$ and $(\boldsymbol{A}_t, \boldsymbol{B}_t) \Rightarrow$ theory-grounded algorithm design
- "optimal" non-zero initialization strategy
- clarification on gradient alignment based algorithms

Target

- How to handle **nonlinearity** at a theoretical level (e.g., training dynamics)
- How to precisely and efficiently approximate **nonlinearity** at a practical level under theoretical guidelines

Thank you!

fanghui.liu@warwick.ac.uk

www.lfhsgre.org

References i

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on Learning Representations, 2022.

Dominik Stöger and Mahdi Soltanolkotabi.
Small random initialization is akin to spectral learning:
Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction.

In Advances in Neural Information Processing Systems, pages 23831–23843, 2021.

Shaowen Wang, Linxi Yu, and Jian Li.

LoRA-GA: Low-rank adaptation with gradient approximation. In *Advances in Neural Information Processing Systems*, 2024.