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Scaling law: under compute budget

scaling law [ ]

test loss = A x Model Size=@ + B x Data Size ? + C
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Figure 1: Scaling law under
compute-optimal configuration [21].



Model size is a “right” complexity?

e double descent [4] (Belkin, Hsu, Ma, Mandal, 2019)
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e Empirically: neural network pruning [16], lottery ticket hypothesis [11],
fine-tuning with large dropout [28]

e Theoretically: how much over-parameterization is sufficient? [7, 26]
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name definition rank correlation
Parameter Frobenius norm {'_:1 w2 0.073
Frobenius distance to initialization [17] S Iwe — w2 —0.263
3/2\ 2/3
) L L w3
Spectral complexity [3] TTi, Wil -1 w, \\3,/2 —0.537
Fisher-Rao [14] L“ S (W, Vwl(hw(x), vi)) 0.078
b
Path-norm [19] Z(,o T (Wi ) 0.373

Table 1: Complexity measures compared in the empirical study [12], and their
correlation with generalization



Two-layer neural networks, path norm
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Two-layer neural networks, path norm

hidden layer

input 6 = olw;, ) P = {fg(') = %Zz;l ak¢(<wkv’>)}
x e R? .
, ¢1-path norm
Wi
m
@ Wa1 ||9HP = % Zk:l |ak|||wk||1

™ )
ai  output
\ \

Tnl ad;’

@



Two-layer neural networks, path norm
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Consider a random features model [22, 15]
o first layer: w X we P(W); only train the second layer

infinite many features f,(x) = [,,, a(w)o(x, w)du(w)

Definition (RKHS and Barron space [, '])

pi=A{f: ||a||LP(u) < oo}, ||f||f,,,,l, = 21; ”aHLP(M)
For any 1 < p < 0o, we have
B=U Fos fllz= inf |f
peromyFous  Iflls N 11l ..

e RFMs = kernel methods by taking p = 2 using Representer theorem [23]
e RFMs = kernel methods if p < 2
o function space: Fo , C Fpu € Fqpu S Fiuifp>gq
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Our results: statistical guarantees

For the class of two-layer neural networks Gg = {fg € P, : |0]|p < R}

fg = argmin — E — fo(xi))
fo€Gr n, 1

Theorem (Liu, Dadi, Cevher, JMLR 2024)

Under standard assumptions (bounded data, f* € B), for two-layer
over-parameterized neural networks, we have
R2

H@—f*”igx hS ;—I—RZd%n*zdd;fz w.h.p.

_d+2 . _1 . q o
n~2d+z is always faster than n=2: No curse of dimensionality!



Sample complexity

Proposition (metric entropy)
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with some universal constant C independent of d.




Sample complexity

Proposition (metric entropy)

For bounded data ||x||s <1, denote Ggr = {fg € P, : ||0]|p < R}, the metric

entropy of G1 can be bounded by
log Na(Gr,€) < Cde %2, Ve>0 and d>5,

with some universal constant C independent of d.

log d d poly(d) exp(d)?
————————— > E—
[E;] OI.‘H’S [2‘7] minimax [25](S‘iegel,Xu7 2024) g
672 € % 5_%



Sample complexity

Proposition (metric entropy)
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entropy of G1 can be bounded by
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The “best” trade-off between € and d.



Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!

10



Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!

- Kernel methods - Neural networks
- RKHS

- Approximation

- Barron spaces
- Optimization
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Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!
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Optimization in Barron spaces is NP hard: curse of dimensionality!
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Computationally-efficient

{ Computationally-inefficient

Do some Barron functions can be learned by two-layer NNs, both
statistically and computationally efficient?
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Learning with multiple ReLU neurons

Can we learn multiple ReLU neurons by two-layer NNs, both
statistically and computationally efficient?

Zaj vi,x)),k=0(1)

[ — |12, < € from {x;, F*(x;)}1_; with x; ~ N(0, 1)

Theorem ([] PAC learning f* under Gaussian measure)

There exists an algorithm that requires time/samples at (d/e)©(<*)

o correlational statistical query (CSQ): |§ — Ex , [¥(x)y]] < T
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How does student(s) become teacher(s) under GD training?

Learning multi ReLU neurons by two-layer NN via online SGD

L(w) = 1x~m,d<2 (wi, X)) — F*(x ))2

e Gaussian initialization w; ~ N(0,0214)

angle: 0;; = Z(w;, v))

diverse teacher neurons: {VJ-}J’-‘:1 are orthogonal and ||vj||> = const

e warm start: the angle not close to orthogonal
o weak recovery: (Wi, vi+) > (wj, vj)

12
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How does student(s) become teacher(s) under GD training?

e align-. 0 =0 norm converge then fit
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Theorem (Zhu, Liu, Cevher, 2024)

For sufficiently small initialization and step-size o, = o(m_"z), then there
exists such that VT € N and i € [m],
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e model size -> size of weights -> path norm -> Barron spaces
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Take-away messages

e model size -> size of weights -> path norm -> Barron spaces

e statistical guarantees with improved sample complexity
e computational-statistical gap -> learning with multiple ReLU neurons

We’'re organizing one workshop at NeurlPS 2024!

Fine-Tuning in Modern Machine Learning: Principles and Scalability
https://sites.google.com/view/neurips2024-ftw/home

Invited speakers
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(UW-Madison) (Princeton) (Stanford/DeepMind) (UCLA)
Panelist
B> = y i
j 2
=W E ;
Taiji Suzuki Tri Dao Azalia Mirhoseini  Quanquan Gu Dangi Chen Yuandong Tian

(UTokyo/RIKEN) (Princeton)  (Stanford/DeepMind) (UCLA) (Princeton) (Meta) 14


https://sites.google.com/view/neurips2024-ftw/home
https://sites.google.com/view/neurips2024-ftw/home

References i

@ Andrew R Barron.
Universal approximation bounds for superpositions of a sigmoidal
function.
IEEE Transactions on Information theory, 39(3):930-945, 1993.

[4 Peter Bartlett.
The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size
of the network.
IEEE Transactions on Information Theory, 44(2):525-536, 1998.

@ Peter Bartlett, Dylan Foster, and Matus Telgarsky.
Spectrally-normalized margin bounds for neural networks.

In Advances in Neural Information Processing Systems, pages 6241-6250,
2017.



References i

[ Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.
Reconciling modern machine-learning practice and the classical
bias—variance trade-off.
the National Academy of Sciences, 116(32):15849-15854, 2019.

B Hongrui Chen, Jihao Long, and Lei Wu.
A duality framework for generalization analysis of random feature
models and two-layer neural networks.
arXiv preprint arXiv:2305.05642, 2023.

[4 Sitan Chen and Shyam Narayanan.
A faster and simpler algorithm for learning shallow networks.
arXiv preprint arXiv:2307.12496, 2023.



References iii

@ Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu.
How much over-parameterization is sufficient to learn deep relu
networks?
In International Conference on Learning Representations, 2020.

[4 Carles Domingo-Enrich and Youssef Mroueh.
Tighter sparse approximation bounds for relu neural networks.
In International Conference on Learning Representations, 2022.

@ Weinan E, Chao Ma, and Lei Wu.
A priori estimates of the population risk for two-layer neural
networks.
Communications in Mathematical Sciences, 17(5):1407-1425, 2019.



References iv

@ Weinan E, Chao Ma, and Lei Wu.
The barron space and the flow-induced function spaces for neural
network models.
Constructive Approximation, pages 1-38, 2021.

@ Jonathan Frankle and Michael Carbin.
The lottery ticket hypothesis: Finding sparse, trainable neural
networks.
In International Conference on Learning Representations, 2019.

B Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and
Samy Bengio.
Fantastic generalization measures and where to find them.
In International Conference on Learning Representations, 2020.



References v

[§ Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei.

Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

B Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes.
Fisher-rao metric, geometry, and complexity of neural networks.
In International conference on Artificial Intelligence and Statistics, pages
888-896, 20109.



References vi

[4 Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan AK Suykens.
Random features for kernel approximation: A survey on algorithms,
theory, and beyond.

IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(10):7128-7148, 2021.

[4 Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz.
Pruning convolutional neural networks for resource efficient
inference.
In International Conference on Learning Representations, 2017.



References vii

[4 Vaishnavh Nagarajan and J Zico Kolter.
Generalization in deep networks: The role of distance from
initialization.
arXiv preprint arXiv:1901.01672, 2019.

@ Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz
Barak, and llya Sutskever.
Deep double descent: Where bigger models and more data hurt.
In International Conference on Learning Representations, 2019.

[ Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.
Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376-1401. PMLR, 2015.



References viii

@ Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro.
A function space view of bounded norm infinite width relu nets:
The multivariate case.
In International Conference on Learning Representations, 2020.

@ Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey
Pennington.
443 phases of compute-optimal neural scaling laws.
arXiv preprint arXiv:2405.15074, 2024.

[4 Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines.

In Advances in Neural Information Processing Systems, pages 1177-1184,
2007.



References ix

[4 Ali Rahimi and Benjamin Recht.
Uniform approximation of functions with random bases.
In Annual Allerton Conference on Communication, Control, and
Computing, pages 555-561. IEEE, 2008.

@ Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro.
How do infinite width bounded norm networks look in function
space?

In Conference on Learning Theory, pages 2667-2690. PMLR, 2019.

[4 Jonathan W Siegel and Jinchao Xu.

Sharp bounds on the approximation rates, metric entropy, and

n-widths of shallow neural networks.
arXiv preprint arXiv:2101.12365, 2021.



References x

@ Taiji Suzuki, Denny Wu, Kazusato Oko, and Atsushi Nitanda.
Feature learning via mean-field langevin dynamics: classifying
sparse parities and beyond.

In Advances in Neural Information Processing Systems, 2023.

[4 Lei Wu and Jihao Long.
A spectral-based analysis of the separation between two-layer
neural networks and linear methods.
Journal of Machine Learning Research, 119:1-34, 2022.

El Jianyu Zhang and Léon Bottou.
Fine-tuning with very large dropout.
arXiv preprint arXiv:2403.00946, 2024.



	Appendix

