
Learning with norm-based neural networks:

model capacity, function spaces, and

computational-statistical gaps

Fanghui LIU
fanghui.liu@warwick.ac.uk

Department of Computer Science, University of Warwick, UK
Centre for Discrete Mathematics and its Applications (DIMAP), Warwick
[joint work with Leello Dadi, Zhenyu Zhu, Volkan Cevher (EPFL)]

at INRIA, Paris, 2024

In the era of deep learning

MLP:
<< 1 million
parameters

ResNet-152:
60.3 million
parameters

Transformer:
340 million
parameters

GPT-2:
1.5 billion

parameters

GPT-3, Chat-GPT:
175 billion
parameters

before 2012 2017 2019 202020152012

AlexNet

2022

GPT-4

2

Scaling law: under compute budget

scaling law [13]

test loss = A × Model Size−a + B × Data Size−b + C

under limited compute budget

• data-parameter trade-off

• time-space trade-off
104 106 108 1010 1012

flops

10 1

100

lo
ss

, P
(fl

op
s)

D = 1,600
D = 3,200
D = 6,400
D = 12,800
D = 25,600
D = 51,200
compute optimal
fixed compute

Figure 1: Toy scaling problem. We plot the loss
function, P(θr; d) as a function of flops f using
(2). Consider a fixed number of flops f = 107

(dashed line). If we had chosen, e.g., d = 1600,
we can run for a long time, but our model does
not have a lot of capacity and thus the value of
the loss function remains high. On the hand, we
can increase capacity by choosing a large number
of parameters (e.g., d = 51, 200), but because our
compute is fixed we can not run our algorithm
for very long. Thus the loss value is still large.
The optimal choice is d ≈ 6, 400. When done
for every choice of f gives the compute-optimal
curve (red line). This choice of (α, β) (Phase I)
is an example of where model capacity controls
the compute-optimal curve, but it is not the only
behavior we show. In other phases the compute-
optimal is controlled by poor model embedding
(Phase II, III) and SGD noise (Phase III, IV).

Main contributions. In this work, we analyze a three
parameter simple model, which we call power-law random
features (PLRF) [9]. The three parameters in the PLRF
are the data complexity (α), target complexity (β) and
model-parameter count d. Using this model, we derive a
deterministic equivalent for the expected loss, as a func-
tion of α, β, and d, that captures the training dynamics
of one-pass SGD. This can be used to derive numerical
predictions for the scaling laws. We also extract exact
expressions for the compute-optimal scaling laws and the
optimal parameter d⋆(f) ∈ arg mindP(f

d·B ; d) for large2

d, and give some estimates on the order of d necessary
for these scaling laws to take hold.

We also observe for a large portion of the (α, β)-phase
plane, the optimal parameter is d⋆ = f1/2, suggesting a
regime of universal scaling behavior (see Fig. 3b and
Table 2).

The PLRF is not only analyzable, but also exhibits
a rich behavior of compute-optimal curves/loss curves,
which are qualitatively and quantitatively different de-
pending on the strengths of the data (α) vs. target (β)
complexity. Particularly, we show that there are 4 dis-
tinct (+3 sub phases) compute-optimal curve/loss curve
behaviors.

Model constrained compute-optimal curves. In two
of the phases (Phase Ia,b,c and Phase II), it is the un-
derlying model that dictates the curves. The algorithm
has little/no impact. This appears in two forms. The
first behavior are compute-optimal curves controlled by
the capacity of the model (Phase Ia,b,c). Here once
the algorithm reaches the limiting risk value possible
(capacity), it is better to increase the model-parameter
d. Another type of loss dynamics is due to poor model
feature embedding (Phase II). Here the features are embedded in a way which is difficult to train. After an
initial large decrease in the loss value, this feature embedding distortion frustrates the algorithm and training
slows, but it continues to solve. However, solving to capacity wastes compute, in that it is compute-favored
to increase the model parameter count d.

Algorithm constrained compute-optimal curves. For some choices of (α, β) (Phase III and IV), it is the
noise produced by the SGD algorithm that ultimately controls the tradeoff. Here the algorithm matters.
Indeed, another algorithm could change the compute-optimal curves for these phases.

Related work. The key source of inspiration for this work are [7, 8], which identified compute optimality
as a fundamental concept in scaling large language models and made a substantial empirical exploration of
it. The problem setup was formulated by [9], where additionally data-limited scalings were considered, but
compute optimality was not (nor indeed any algorithmic considerations); see also [4] where gradient flow
was considered in the same setting.

There is a substantial body of work considering scaling laws of losses (trained to minimum-loss) of
dataset size vs parameter count, in a variety of settings (linear, random features, deep networks). See

2We discuss how large is large, but the truth is somewhat complicated and also quite dependent on the desired precision. If
±0.05 on the achieved scaling laws is tolerable, a flat d > 1000 seems to suffice across all phases.

2

Figure 1: Scaling law under
compute-optimal configuration [21].

3

Model size is a “right” complexity?

• double descent [4] (Belkin, Hsu, Ma, Mandal, 2019)

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran⇤

Harvard University
Gal Kaplun†

Harvard University
Yamini Bansal†
Harvard University

Tristan Yang
Harvard University

Boaz Barak
Harvard University

Ilya Sutskever
OpenAI

ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu

†Equal contribution

1

ar
X

iv
:1

91
2.

02
29

2v
1

 [c
s.L

G
]

4
D

ec
 2

01
9

(a) Results on ResNet18 [18]

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran⇤

Harvard University
Gal Kaplun†

Harvard University
Yamini Bansal†
Harvard University

Tristan Yang
Harvard University

Boaz Barak
Harvard University

Ilya Sutskever
OpenAI

ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu

†Equal contribution

1

ar
X

iv
:1

91
2.

02
29

2v
1

 [c
s.L

G
]

4
D

ec
 2

01
9

(b) Optimal early stopping [18].

• Empirically: neural network pruning [16], lottery ticket hypothesis [11],
fine-tuning with large dropout [28]

• Theoretically: how much over-parameterization is sufficient? [7, 26]

4

Model size is a “right” complexity?

• double descent [4] (Belkin, Hsu, Ma, Mandal, 2019)

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran⇤

Harvard University
Gal Kaplun†

Harvard University
Yamini Bansal†
Harvard University

Tristan Yang
Harvard University

Boaz Barak
Harvard University

Ilya Sutskever
OpenAI

ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu

†Equal contribution

1

ar
X

iv
:1

91
2.

02
29

2v
1

 [c
s.L

G
]

4
D

ec
 2

01
9

(a) Results on ResNet18 [18]

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran⇤

Harvard University
Gal Kaplun†

Harvard University
Yamini Bansal†
Harvard University

Tristan Yang
Harvard University

Boaz Barak
Harvard University

Ilya Sutskever
OpenAI

ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu

†Equal contribution

1

ar
X

iv
:1

91
2.

02
29

2v
1

 [c
s.L

G
]

4
D

ec
 2

01
9

(b) Optimal early stopping [18].

• Empirically: neural network pruning [16], lottery ticket hypothesis [11],
fine-tuning with large dropout [28]

• Theoretically: how much over-parameterization is sufficient? [7, 26]

4

What is the “right” model complexity?

◦ Complexity of a prediction rule, e.g.,

• number of parameters
• norm of parameters

[2] (Bartlett, 1998)

The size of the weights is more important than the size of the network!

Norm-based capacity:[19, 24, 20, 8]

name definition rank correlation
Parameter Frobenius norm

∑L
i=1 ∥W i∥2

F 0.073
Frobenius distance to initialization [17]

∑L
i=1 ∥W i − W 0

i ∥2
F −0.263

Spectral complexity [3]
∏L

i=1 ∥W i∥
(∑L

i=1
∥W i∥

3/2
2,1

∥W i∥
3/2

)2/3

−0.537

Fisher-Rao [14] (L+1)2
n

∑n
i=1⟨W ,∇W ℓ(hW (x i), yi)⟩ 0.078

Path-norm [19]
∑

(i0,...,iL)

∏L
j=1

(
W ij ,ij−1

)2
0.373

Table 1: Complexity measures compared in the empirical study [12], and their
correlation with generalization

5

What is the “right” model complexity?

◦ Complexity of a prediction rule, e.g.,

• number of parameters
• norm of parameters

[2] (Bartlett, 1998)

The size of the weights is more important than the size of the network!

Norm-based capacity:[19, 24, 20, 8]

name definition rank correlation
Parameter Frobenius norm

∑L
i=1 ∥W i∥2

F 0.073
Frobenius distance to initialization [17]

∑L
i=1 ∥W i − W 0

i ∥2
F −0.263

Spectral complexity [3]
∏L

i=1 ∥W i∥
(∑L

i=1
∥W i∥

3/2
2,1

∥W i∥
3/2

)2/3

−0.537

Fisher-Rao [14] (L+1)2
n

∑n
i=1⟨W ,∇W ℓ(hW (x i), yi)⟩ 0.078

Path-norm [19]
∑

(i0,...,iL)

∏L
j=1

(
W ij ,ij−1

)2
0.373

Table 1: Complexity measures compared in the empirical study [12], and their
correlation with generalization

5

What is the “right” model complexity?

◦ Complexity of a prediction rule, e.g.,

• number of parameters
• norm of parameters

[2] (Bartlett, 1998)

The size of the weights is more important than the size of the network!

Norm-based capacity:[19, 24, 20, 8]

name definition rank correlation
Parameter Frobenius norm

∑L
i=1 ∥W i∥2

F 0.073
Frobenius distance to initialization [17]

∑L
i=1 ∥W i − W 0

i ∥2
F −0.263

Spectral complexity [3]
∏L

i=1 ∥W i∥
(∑L

i=1
∥W i∥

3/2
2,1

∥W i∥
3/2

)2/3

−0.537

Fisher-Rao [14] (L+1)2
n

∑n
i=1⟨W ,∇W ℓ(hW (x i), yi)⟩ 0.078

Path-norm [19]
∑

(i0,...,iL)

∏L
j=1

(
W ij ,ij−1

)2
0.373

Table 1: Complexity measures compared in the empirical study [12], and their
correlation with generalization

5

What is the “right” model complexity?

◦ Complexity of a prediction rule, e.g.,

• number of parameters
• norm of parameters

[2] (Bartlett, 1998)

The size of the weights is more important than the size of the network!

Norm-based capacity:[19, 24, 20, 8]

name definition rank correlation
Parameter Frobenius norm

∑L
i=1 ∥W i∥2

F 0.073
Frobenius distance to initialization [17]

∑L
i=1 ∥W i − W 0

i ∥2
F −0.263

Spectral complexity [3]
∏L

i=1 ∥W i∥
(∑L

i=1
∥W i∥

3/2
2,1

∥W i∥
3/2

)2/3

−0.537

Fisher-Rao [14] (L+1)2
n

∑n
i=1⟨W ,∇W ℓ(hW (x i), yi)⟩ 0.078

Path-norm [19]
∑

(i0,...,iL)

∏L
j=1

(
W ij ,ij−1

)2
0.373

Table 1: Complexity measures compared in the empirical study [12], and their
correlation with generalization

5

Two-layer neural networks, path norm

[x]1

[x]2

[x]d

...

ϕ1
W1,1

ϕ2
W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

Pm =
{
fθ(·) := 1

m

∑m
k=1 akϕ

(
⟨w k , ·⟩

)}
ℓ1-path norm

∥θ∥P := 1
m

∑m
k=1 |ak |∥w k∥1

• semi-norm

• representation cost

• relations to Barron spaces B [1, 10]

• ∥f ∥B ≤ ∥θ∥P ≤ 2∥f ∥B

6

Two-layer neural networks, path norm

[x]1

[x]2

[x]d

...

ϕ1
W1,1

ϕ2
W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

Pm =
{
fθ(·) := 1

m

∑m
k=1 akϕ

(
⟨w k , ·⟩

)}
ℓ1-path norm

∥θ∥P := 1
m

∑m
k=1 |ak |∥w k∥1

• semi-norm

• representation cost

• relations to Barron spaces B [1, 10]

• ∥f ∥B ≤ ∥θ∥P ≤ 2∥f ∥B

6

Two-layer neural networks, path norm

[x]1

[x]2

[x]d

...

ϕ1
W1,1

ϕ2
W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

Pm =
{
fθ(·) := 1

m

∑m
k=1 akϕ

(
⟨w k , ·⟩

)}
ℓ1-path norm

∥θ∥P := 1
m

∑m
k=1 |ak |∥w k∥1

• semi-norm

• representation cost

• relations to Barron spaces B [1, 10]

• ∥f ∥B ≤ ∥θ∥P ≤ 2∥f ∥B

6

Two-layer neural networks, path norm

[x]1

[x]2

[x]d

...

ϕ1
W1,1

ϕ2
W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

Pm =
{
fθ(·) := 1

m

∑m
k=1 akϕ

(
⟨w k , ·⟩

)}
ℓ1-path norm

∥θ∥P := 1
m

∑m
k=1 |ak |∥w k∥1

• semi-norm

• representation cost

• relations to Barron spaces B [1, 10]

• ∥f ∥B ≤ ∥θ∥P ≤ 2∥f ∥B

6

Path norm, Barron spaces, RKHS

Consider a random features model [22, 15]

• first layer: w iid∼ µ ∈ P(W); only train the second layer

infinite many features fa(x) =
∫
W a(w)ϕ(x ,w)dµ(w)

Definition (RKHS and Barron space [9, 5])

Fp,µ := {fa : ∥a∥Lp(µ) <∞}, ∥f ∥Fp,µ := inf
f=fa
∥a∥Lp(µ)

For any 1 ≤ p ≤ ∞, we have

B = ∪µ∈P(W)Fp,µ , ∥f ∥B = inf
µ∈P(W)

∥f ∥Fp,µ

• RFMs ≡ kernel methods by taking p = 2 using Representer theorem [23]
• RFMs ̸≡ kernel methods if p < 2
• function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q

7

Path norm, Barron spaces, RKHS

Consider a random features model [22, 15]

• first layer: w iid∼ µ ∈ P(W); only train the second layer

infinite many features fa(x) =
∫
W a(w)ϕ(x ,w)dµ(w)

Definition (RKHS and Barron space [9, 5])

Fp,µ := {fa : ∥a∥Lp(µ) <∞}, ∥f ∥Fp,µ := inf
f=fa
∥a∥Lp(µ)

For any 1 ≤ p ≤ ∞, we have

B = ∪µ∈P(W)Fp,µ , ∥f ∥B = inf
µ∈P(W)

∥f ∥Fp,µ

• RFMs ≡ kernel methods by taking p = 2 using Representer theorem [23]
• RFMs ̸≡ kernel methods if p < 2
• function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q

7

Path norm, Barron spaces, RKHS

Consider a random features model [22, 15]

• first layer: w iid∼ µ ∈ P(W); only train the second layer

infinite many features fa(x) =
∫
W a(w)ϕ(x ,w)dµ(w)

Definition (RKHS and Barron space [9, 5])

Fp,µ := {fa : ∥a∥Lp(µ) <∞}, ∥f ∥Fp,µ := inf
f=fa
∥a∥Lp(µ)

For any 1 ≤ p ≤ ∞, we have

B = ∪µ∈P(W)Fp,µ , ∥f ∥B = inf
µ∈P(W)

∥f ∥Fp,µ

• RFMs ≡ kernel methods by taking p = 2 using Representer theorem [23]
• RFMs ̸≡ kernel methods if p < 2
• function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q

7

Path norm, Barron spaces, RKHS

Consider a random features model [22, 15]

• first layer: w iid∼ µ ∈ P(W); only train the second layer

infinite many features fa(x) =
∫
W a(w)ϕ(x ,w)dµ(w)

Definition (RKHS and Barron space [9, 5])

Fp,µ := {fa : ∥a∥Lp(µ) <∞}, ∥f ∥Fp,µ := inf
f=fa
∥a∥Lp(µ)

For any 1 ≤ p ≤ ∞, we have

B = ∪µ∈P(W)Fp,µ , ∥f ∥B = inf
µ∈P(W)

∥f ∥Fp,µ

• RFMs ≡ kernel methods by taking p = 2 using Representer theorem [23]
• RFMs ̸≡ kernel methods if p < 2
• function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q

7

Path norm, Barron spaces, RKHS

Consider a random features model [22, 15]

• first layer: w iid∼ µ ∈ P(W); only train the second layer

infinite many features fa(x) =
∫
W a(w)ϕ(x ,w)dµ(w)

Definition (RKHS and Barron space [9, 5])

Fp,µ := {fa : ∥a∥Lp(µ) <∞}, ∥f ∥Fp,µ := inf
f=fa
∥a∥Lp(µ)

For any 1 ≤ p ≤ ∞, we have

B = ∪µ∈P(W)Fp,µ , ∥f ∥B = inf
µ∈P(W)

∥f ∥Fp,µ

• RFMs ≡ kernel methods by taking p = 2 using Representer theorem [23]
• RFMs ̸≡ kernel methods if p < 2
• function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q

7

Our results: statistical guarantees

For the class of two-layer neural networks GR = {fθ ∈ Pm : ∥θ∥P ⩽ R}

f̂θ := argmin
fθ∈GR

1
n

n∑
i=1

(yi − fθ(x i))
2 .

Theorem (Liu, Dadi, Cevher, JMLR 2024)

Under standard assumptions (bounded data, f ⋆ ∈ B), for two-layer
over-parameterized neural networks, we have∥∥f̂θ − f ⋆

∥∥2
L2
ρX

≲
R2

m
+ R2d

1
3 n−

d+2
2d+2 w .h.p.

n−
d+2
2d+2 is always faster than n−

1
2 : No curse of dimensionality!

8

Our results: statistical guarantees

For the class of two-layer neural networks GR = {fθ ∈ Pm : ∥θ∥P ⩽ R}

f̂θ := argmin
fθ∈GR

1
n

n∑
i=1

(yi − fθ(x i))
2 .

Theorem (Liu, Dadi, Cevher, JMLR 2024)

Under standard assumptions (bounded data, f ⋆ ∈ B), for two-layer
over-parameterized neural networks, we have∥∥f̂θ − f ⋆

∥∥2
L2
ρX

≲
R2

m
+ R2d

1
3 n−

d+2
2d+2 w .h.p.

n−
d+2
2d+2 is always faster than n−

1
2 : No curse of dimensionality!

8

Our results: statistical guarantees

For the class of two-layer neural networks GR = {fθ ∈ Pm : ∥θ∥P ⩽ R}

f̂θ := argmin
fθ∈GR

1
n

n∑
i=1

(yi − fθ(x i))
2 .

Theorem (Liu, Dadi, Cevher, JMLR 2024)

Under standard assumptions (bounded data, f ⋆ ∈ B), for two-layer
over-parameterized neural networks, we have∥∥f̂θ − f ⋆

∥∥2
L2
ρX

≲
R2

m
+ R2d

1
3 n−

d+2
2d+2 w .h.p.

n−
d+2
2d+2 is always faster than n−

1
2 : No curse of dimensionality!

8

Sample complexity

Proposition (metric entropy)

For bounded data ∥x∥∞ ≤ 1, denote GR = {fθ ∈ Pm : ∥θ∥P ⩽ R}, the metric
entropy of G1 can be bounded by

logN2(G1, ϵ) ⩽ Cdϵ−
2d
d+2 , ∀ϵ > 0 and d ≥ 5 ,

with some universal constant C independent of d .

log d d poly(d) exp(d)?

ϵ−2 ϵ−
2d
d+2 ϵ−

2d
d+3

[9] Ours [27] minimax [25](Siegel,Xu, 2024)

The “best” trade-off between ϵ and d .

9

Sample complexity

Proposition (metric entropy)

For bounded data ∥x∥∞ ≤ 1, denote GR = {fθ ∈ Pm : ∥θ∥P ⩽ R}, the metric
entropy of G1 can be bounded by

logN2(G1, ϵ) ⩽ Cdϵ−
2d
d+2 , ∀ϵ > 0 and d ≥ 5 ,

with some universal constant C independent of d .

log d d poly(d) exp(d)?

ϵ−2 ϵ−
2d
d+2 ϵ−

2d
d+3

[9] Ours [27] minimax [25](Siegel,Xu, 2024)

The “best” trade-off between ϵ and d .

9

Sample complexity

Proposition (metric entropy)

For bounded data ∥x∥∞ ≤ 1, denote GR = {fθ ∈ Pm : ∥θ∥P ⩽ R}, the metric
entropy of G1 can be bounded by

logN2(G1, ϵ) ⩽ Cdϵ−
2d
d+2 , ∀ϵ > 0 and d ≥ 5 ,

with some universal constant C independent of d .

log d d poly(d) exp(d)?

ϵ−2 ϵ−
2d
d+2 ϵ−

2d
d+3

[9] Ours [27] minimax [25](Siegel,Xu, 2024)

The “best” trade-off between ϵ and d .
9

Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!

Do some Barron functions can be learned by two-layer NNs, both
statistically and computationally efficient?

10

Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!

- Kernel methods
- RKHS
- Approximation

- Neural networks
- Barron spaces
- Optimization

Do some Barron functions can be learned by two-layer NNs, both
statistically and computationally efficient?

10

Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!

RKHS hyper-RKHS Barron Sobolev

Statistically-efficient

(Bach 2017) (Barron 1993; E et al. 2021) (Schmidt-Hieber 2020)(Chen et al. 2023)(Ong et al. 2004;
Liu et al. 2021)

(Aronszajn 1950;
Bach 2017)

Computationally-efficient Computationally-inefficient

Statistically
inefficient

Do some Barron functions can be learned by two-layer NNs, both
statistically and computationally efficient?

10

Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!

RKHS hyper-RKHS Barron Sobolev

Statistically-efficient

(Bach 2017) (Barron 1993; E et al. 2021) (Schmidt-Hieber 2020)(Chen et al. 2023)(Ong et al. 2004;
Liu et al. 2021)

(Aronszajn 1950;
Bach 2017)

Computationally-efficient Computationally-inefficient

Statistically
inefficient

Do some Barron functions can be learned by two-layer NNs, both
statistically and computationally efficient?

10

Learning with multiple ReLU neurons

Can we learn multiple ReLU neurons by two-layer NNs, both
statistically and computationally efficient?

f ⋆(x) =
k∑

j=1

ajσ(⟨ v j , x⟩), k = O(1)

∥f̂ − f ⋆∥L2(dµ) ≤ ϵ from {x i , f
⋆(x i)}ni=1 with x i ∼ N (0, I d)

Theorem ([6] PAC learning f ⋆ under Gaussian measure)

There exists an algorithm that requires time/samples at (d/ϵ)O(k2)

• correlational statistical query (CSQ): |q̃ − Ex,y [ψ(x)y]| ≤ τ

11

Learning with multiple ReLU neurons

Can we learn multiple ReLU neurons by two-layer NNs, both
statistically and computationally efficient?

f ⋆(x) =
k∑

j=1

ajσ(⟨ v j , x⟩), k = O(1)

∥f̂ − f ⋆∥L2(dµ) ≤ ϵ from {x i , f
⋆(x i)}ni=1 with x i ∼ N (0, I d)

Theorem ([6] PAC learning f ⋆ under Gaussian measure)

There exists an algorithm that requires time/samples at (d/ϵ)O(k2)

• correlational statistical query (CSQ): |q̃ − Ex,y [ψ(x)y]| ≤ τ

11

Learning with multiple ReLU neurons

Can we learn multiple ReLU neurons by two-layer NNs, both
statistically and computationally efficient?

f ⋆(x) =
k∑

j=1

ajσ(⟨ v j , x⟩), k = O(1)

∥f̂ − f ⋆∥L2(dµ) ≤ ϵ from {x i , f
⋆(x i)}ni=1 with x i ∼ N (0, I d)

Theorem ([6] PAC learning f ⋆ under Gaussian measure)

There exists an algorithm that requires time/samples at (d/ϵ)O(k2)

• correlational statistical query (CSQ): |q̃ − Ex,y [ψ(x)y]| ≤ τ

11

Learning with multiple ReLU neurons

Can we learn multiple ReLU neurons by two-layer NNs, both
statistically and computationally efficient?

f ⋆(x) =
k∑

j=1

ajσ(⟨ v j , x⟩), k = O(1)

∥f̂ − f ⋆∥L2(dµ) ≤ ϵ from {x i , f
⋆(x i)}ni=1 with x i ∼ N (0, I d)

Theorem ([6] PAC learning f ⋆ under Gaussian measure)

There exists an algorithm that requires time/samples at (d/ϵ)O(k2)

• correlational statistical query (CSQ): |q̃ − Ex,y [ψ(x)y]| ≤ τ

11

Learning with multiple ReLU neurons

Can we learn multiple ReLU neurons by two-layer NNs, both
statistically and computationally efficient?

f ⋆(x) =
k∑

j=1

ajσ(⟨ v j , x⟩), k = O(1)

∥f̂ − f ⋆∥L2(dµ) ≤ ϵ from {x i , f
⋆(x i)}ni=1 with x i ∼ N (0, I d)

Theorem ([6] PAC learning f ⋆ under Gaussian measure)

There exists an algorithm that requires time/samples at (d/ϵ)O(k2)

• correlational statistical query (CSQ): |q̃ − Ex,y [ψ(x)y]| ≤ τ

11

How does student(s) become teacher(s) under GD training?

Learning multi ReLU neurons by two-layer NN via online SGD

L(W) =
1
2
Ex∼N (0,I d)

(m∑
i=1

σ(⟨w i , x⟩)− f ⋆(x)
)2

• Gaussian initialization w i ∼ N (0, σ2I d)

• angle: θij ≜ ∠(w i , v j)

Assumption

• diverse teacher neurons: {v j}kj=1 are orthogonal and ∥v j∥2 = const

• warm start: the smallest angle not close to orthogonal
◦ weak recovery: ⟨w i , v i⋆⟩ ≫ ⟨w i , v j⟩

12

How does student(s) become teacher(s) under GD training?

Learning multi ReLU neurons by two-layer NN via online SGD

L(W) =
1
2
Ex∼N (0,I d)

(m∑
i=1

σ(⟨w i , x⟩)− f ⋆(x)
)2

• Gaussian initialization w i ∼ N (0, σ2I d)

• angle: θij ≜ ∠(w i , v j)

Assumption

• diverse teacher neurons: {v j}kj=1 are orthogonal and ∥v j∥2 = const

• warm start: the smallest angle not close to orthogonal
◦ weak recovery: ⟨w i , v i⋆⟩ ≫ ⟨w i , v j⟩

12

How does student(s) become teacher(s) under GD training?

Learning multi ReLU neurons by two-layer NN via online SGD

L(W) =
1
2
Ex∼N (0,I d)

(m∑
i=1

σ(⟨w i , x⟩)− f ⋆(x)
)2

• Gaussian initialization w i ∼ N (0, σ2I d)

• angle: θij ≜ ∠(w i , v j)

Assumption

• diverse teacher neurons: {v j}kj=1 are orthogonal and ∥v j∥2 = const

• warm start: the smallest angle not close to orthogonal
◦ weak recovery: ⟨w i , v i⋆⟩ ≫ ⟨w i , v j⟩

12

How does student(s) become teacher(s) under GD training?

Learning multi ReLU neurons by two-layer NN via online SGD

L(W) =
1
2
Ex∼N (0,I d)

(m∑
i=1

σ(⟨w i , x⟩)− f ⋆(x)
)2

• Gaussian initialization w i ∼ N (0, σ2I d)

• angle: θij ≜ ∠(w i , v j)

Assumption

• diverse teacher neurons: {v j}kj=1 are orthogonal and ∥v j∥2 = const

• warm start: the smallest angle not close to orthogonal
◦ weak recovery: ⟨w i , v i⋆⟩ ≫ ⟨w i , v j⟩

12

How does student(s) become teacher(s) under GD training?

• align θi∗ → 0 norm converge then fit

0 1000 2000 3000 4000 5000
epochs

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

va
lu

e

cos i

 ||wi||

102 103

epochs

10 3

10 2

10 1

100

101

lo
ss

Trainin Loss
Testing Loss

Theorem (Zhu, Liu, Cevher, 2024)

For sufficiently small initialization and step-size σ, η = o(m−k2
), then there

exists a time T2 = 1
η such that ∀T ∈ N and i ∈ [m],

L(W (T + T2)) ≤ O
(

1
T 3

)
, ∥w i (T + T2)∥2 = Θ

(
k∥v∥2
m

)
w .h.p .

13

How does student(s) become teacher(s) under GD training?

• align θi∗ → 0 norm converge then fit

0 1000 2000 3000 4000 5000
epochs

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

va
lu

e

cos i

 ||wi||

102 103

epochs

10 3

10 2

10 1

100

101

lo
ss

Trainin Loss
Testing Loss

Theorem (Zhu, Liu, Cevher, 2024)

For sufficiently small initialization and step-size σ, η = o(m−k2
), then there

exists a time T2 = 1
η such that ∀T ∈ N and i ∈ [m],

L(W (T + T2)) ≤ O
(

1
T 3

)
, ∥w i (T + T2)∥2 = Θ

(
k∥v∥2
m

)
w .h.p .

13

Take-away messages

• model size -> size of weights -> path norm -> Barron spaces
• statistical guarantees with improved sample complexity
• computational-statistical gap -> learning with multiple ReLU neurons

We’re organizing one workshop at NeurIPS 2024!
Fine-Tuning in Modern Machine Learning: Principles and Scalability
https://sites.google.com/view/neurips2024-ftw/home

Invited speakers

Dimitris Papailiopoulos
 (UW-Madison)

Jason Lee
(Princeton)

Azalia Mirhoseini
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Panelist

Taiji Suzuki
(UTokyo/RIKEN)

Tri Dao
(Princeton)

Azalia Mirhoseini
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Danqi Chen
(Princeton)

Yuandong Tian
(Meta)

14

https://sites.google.com/view/neurips2024-ftw/home
https://sites.google.com/view/neurips2024-ftw/home

Take-away messages

• model size -> size of weights -> path norm -> Barron spaces
• statistical guarantees with improved sample complexity
• computational-statistical gap -> learning with multiple ReLU neurons

We’re organizing one workshop at NeurIPS 2024!
Fine-Tuning in Modern Machine Learning: Principles and Scalability
https://sites.google.com/view/neurips2024-ftw/home

Invited speakers

Dimitris Papailiopoulos
 (UW-Madison)

Jason Lee
(Princeton)

Azalia Mirhoseini
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Panelist

Taiji Suzuki
(UTokyo/RIKEN)

Tri Dao
(Princeton)

Azalia Mirhoseini
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Danqi Chen
(Princeton)

Yuandong Tian
(Meta)

14

https://sites.google.com/view/neurips2024-ftw/home
https://sites.google.com/view/neurips2024-ftw/home

Take-away messages

• model size -> size of weights -> path norm -> Barron spaces
• statistical guarantees with improved sample complexity
• computational-statistical gap -> learning with multiple ReLU neurons

We’re organizing one workshop at NeurIPS 2024!
Fine-Tuning in Modern Machine Learning: Principles and Scalability
https://sites.google.com/view/neurips2024-ftw/home

Invited speakers

Dimitris Papailiopoulos
 (UW-Madison)

Jason Lee
(Princeton)

Azalia Mirhoseini
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Panelist

Taiji Suzuki
(UTokyo/RIKEN)

Tri Dao
(Princeton)

Azalia Mirhoseini
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Danqi Chen
(Princeton)

Yuandong Tian
(Meta)

14

https://sites.google.com/view/neurips2024-ftw/home
https://sites.google.com/view/neurips2024-ftw/home

Take-away messages

• model size -> size of weights -> path norm -> Barron spaces
• statistical guarantees with improved sample complexity
• computational-statistical gap -> learning with multiple ReLU neurons

We’re organizing one workshop at NeurIPS 2024!
Fine-Tuning in Modern Machine Learning: Principles and Scalability
https://sites.google.com/view/neurips2024-ftw/home

Invited speakers

Dimitris Papailiopoulos
 (UW-Madison)

Jason Lee
(Princeton)

Azalia Mirhoseini
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Panelist

Taiji Suzuki
(UTokyo/RIKEN)

Tri Dao
(Princeton)

Azalia Mirhoseini
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Danqi Chen
(Princeton)

Yuandong Tian
(Meta) 14

https://sites.google.com/view/neurips2024-ftw/home
https://sites.google.com/view/neurips2024-ftw/home

References i

Andrew R Barron.
Universal approximation bounds for superpositions of a sigmoidal
function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.

Peter Bartlett.
The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size
of the network.
IEEE Transactions on Information Theory, 44(2):525–536, 1998.

Peter Bartlett, Dylan Foster, and Matus Telgarsky.
Spectrally-normalized margin bounds for neural networks.
In Advances in Neural Information Processing Systems, pages 6241–6250,
2017.

References ii

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.
Reconciling modern machine-learning practice and the classical
bias–variance trade-off.
the National Academy of Sciences, 116(32):15849–15854, 2019.

Hongrui Chen, Jihao Long, and Lei Wu.
A duality framework for generalization analysis of random feature
models and two-layer neural networks.
arXiv preprint arXiv:2305.05642, 2023.

Sitan Chen and Shyam Narayanan.
A faster and simpler algorithm for learning shallow networks.
arXiv preprint arXiv:2307.12496, 2023.

References iii

Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu.
How much over-parameterization is sufficient to learn deep relu
networks?
In International Conference on Learning Representations, 2020.

Carles Domingo-Enrich and Youssef Mroueh.
Tighter sparse approximation bounds for relu neural networks.
In International Conference on Learning Representations, 2022.

Weinan E, Chao Ma, and Lei Wu.
A priori estimates of the population risk for two-layer neural
networks.
Communications in Mathematical Sciences, 17(5):1407–1425, 2019.

References iv

Weinan E, Chao Ma, and Lei Wu.
The barron space and the flow-induced function spaces for neural
network models.
Constructive Approximation, pages 1–38, 2021.

Jonathan Frankle and Michael Carbin.
The lottery ticket hypothesis: Finding sparse, trainable neural
networks.
In International Conference on Learning Representations, 2019.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and
Samy Bengio.
Fantastic generalization measures and where to find them.
In International Conference on Learning Representations, 2020.

References v

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei.
Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes.
Fisher-rao metric, geometry, and complexity of neural networks.
In International conference on Artificial Intelligence and Statistics, pages
888–896, 2019.

References vi

Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan AK Suykens.
Random features for kernel approximation: A survey on algorithms,
theory, and beyond.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(10):7128–7148, 2021.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz.
Pruning convolutional neural networks for resource efficient
inference.
In International Conference on Learning Representations, 2017.

References vii

Vaishnavh Nagarajan and J Zico Kolter.
Generalization in deep networks: The role of distance from
initialization.
arXiv preprint arXiv:1901.01672, 2019.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz
Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt.
In International Conference on Learning Representations, 2019.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro.
Norm-based capacity control in neural networks.
In Conference on Learning Theory, pages 1376–1401. PMLR, 2015.

References viii

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro.
A function space view of bounded norm infinite width relu nets:
The multivariate case.
In International Conference on Learning Representations, 2020.

Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey
Pennington.
4+3 phases of compute-optimal neural scaling laws.
arXiv preprint arXiv:2405.15074, 2024.

Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems, pages 1177–1184,
2007.

References ix

Ali Rahimi and Benjamin Recht.
Uniform approximation of functions with random bases.
In Annual Allerton Conference on Communication, Control, and
Computing, pages 555–561. IEEE, 2008.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro.
How do infinite width bounded norm networks look in function
space?
In Conference on Learning Theory, pages 2667–2690. PMLR, 2019.

Jonathan W Siegel and Jinchao Xu.
Sharp bounds on the approximation rates, metric entropy, and
n-widths of shallow neural networks.
arXiv preprint arXiv:2101.12365, 2021.

References x

Taiji Suzuki, Denny Wu, Kazusato Oko, and Atsushi Nitanda.
Feature learning via mean-field langevin dynamics: classifying
sparse parities and beyond.
In Advances in Neural Information Processing Systems, 2023.

Lei Wu and Jihao Long.
A spectral-based analysis of the separation between two-layer
neural networks and linear methods.
Journal of Machine Learning Research, 119:1–34, 2022.

Jianyu Zhang and Léon Bottou.
Fine-tuning with very large dropout.
arXiv preprint arXiv:2403.00946, 2024.

	Appendix

