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Scaling law: under compute budget

scaling law [13]

test loss = A × Model Size−a + B × Data Size−b + C

under limited compute budget

• data-parameter trade-off

• time-space trade-off
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Figure 1: Toy scaling problem. We plot the loss
function, P(θr; d) as a function of flops f using
(2). Consider a fixed number of flops f = 107

(dashed line). If we had chosen, e.g., d = 1600,
we can run for a long time, but our model does
not have a lot of capacity and thus the value of
the loss function remains high. On the hand, we
can increase capacity by choosing a large number
of parameters (e.g., d = 51, 200), but because our
compute is fixed we can not run our algorithm
for very long. Thus the loss value is still large.
The optimal choice is d ≈ 6, 400. When done
for every choice of f gives the compute-optimal
curve (red line). This choice of (α, β) (Phase I)
is an example of where model capacity controls
the compute-optimal curve, but it is not the only
behavior we show. In other phases the compute-
optimal is controlled by poor model embedding
(Phase II, III) and SGD noise (Phase III, IV).

Main contributions. In this work, we analyze a three
parameter simple model, which we call power-law random
features (PLRF) [9]. The three parameters in the PLRF
are the data complexity (α), target complexity (β) and
model-parameter count d. Using this model, we derive a
deterministic equivalent for the expected loss, as a func-
tion of α, β, and d, that captures the training dynamics
of one-pass SGD. This can be used to derive numerical
predictions for the scaling laws. We also extract exact
expressions for the compute-optimal scaling laws and the
optimal parameter d⋆(f) ∈ arg mindP( f

d·B ; d) for large2

d, and give some estimates on the order of d necessary
for these scaling laws to take hold.

We also observe for a large portion of the (α, β)-phase
plane, the optimal parameter is d⋆ = f1/2, suggesting a
regime of universal scaling behavior (see Fig. 3b and
Table 2).

The PLRF is not only analyzable, but also exhibits
a rich behavior of compute-optimal curves/loss curves,
which are qualitatively and quantitatively different de-
pending on the strengths of the data (α) vs. target (β)
complexity. Particularly, we show that there are 4 dis-
tinct (+3 sub phases) compute-optimal curve/loss curve
behaviors.

Model constrained compute-optimal curves. In two
of the phases (Phase Ia,b,c and Phase II), it is the un-
derlying model that dictates the curves. The algorithm
has little/no impact. This appears in two forms. The
first behavior are compute-optimal curves controlled by
the capacity of the model (Phase Ia,b,c). Here once
the algorithm reaches the limiting risk value possible
(capacity), it is better to increase the model-parameter
d. Another type of loss dynamics is due to poor model
feature embedding (Phase II). Here the features are embedded in a way which is difficult to train. After an
initial large decrease in the loss value, this feature embedding distortion frustrates the algorithm and training
slows, but it continues to solve. However, solving to capacity wastes compute, in that it is compute-favored
to increase the model parameter count d.

Algorithm constrained compute-optimal curves. For some choices of (α, β) (Phase III and IV), it is the
noise produced by the SGD algorithm that ultimately controls the tradeoff. Here the algorithm matters.
Indeed, another algorithm could change the compute-optimal curves for these phases.

Related work. The key source of inspiration for this work are [7, 8], which identified compute optimality
as a fundamental concept in scaling large language models and made a substantial empirical exploration of
it. The problem setup was formulated by [9], where additionally data-limited scalings were considered, but
compute optimality was not (nor indeed any algorithmic considerations); see also [4] where gradient flow
was considered in the same setting.

There is a substantial body of work considering scaling laws of losses (trained to minimum-loss) of
dataset size vs parameter count, in a variety of settings (linear, random features, deep networks). See

2We discuss how large is large, but the truth is somewhat complicated and also quite dependent on the desired precision. If
±0.05 on the achieved scaling laws is tolerable, a flat d > 1000 seems to suffice across all phases.
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Figure 1: Scaling law under
compute-optimal configuration [21].
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Model size is a “right” complexity?

• double descent [4] (Belkin, Hsu, Ma, Mandal, 2019)
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ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.
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(a) Results on ResNet18 [18]
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(b) Optimal early stopping [18].

• Empirically: neural network pruning [16], lottery ticket hypothesis [11],
fine-tuning with large dropout [28]

• Theoretically: how much over-parameterization is sufficient? [7, 26]
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What is the “right” model complexity?

◦ Complexity of a prediction rule, e.g.,

• number of parameters
• norm of parameters

[2] (Bartlett, 1998)

The size of the weights is more important than the size of the network!

Norm-based capacity:[19, 24, 20, 8]

name definition rank correlation
Parameter Frobenius norm

∑L
i=1 ∥W i∥2

F 0.073
Frobenius distance to initialization [17]

∑L
i=1 ∥W i − W 0

i ∥2
F −0.263

Spectral complexity [3]
∏L

i=1 ∥W i∥
(∑L

i=1
∥W i∥

3/2
2,1

∥W i∥
3/2

)2/3

−0.537

Fisher-Rao [14] (L+1)2
n

∑n
i=1⟨W ,∇W ℓ(hW (x i ), yi )⟩ 0.078

Path-norm [19]
∑

(i0,...,iL)

∏L
j=1

(
W ij ,ij−1

)2
0.373

Table 1: Complexity measures compared in the empirical study [12], and their
correlation with generalization
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Two-layer neural networks, path norm

[x]1

[x]2

[x]d

...

ϕ1
W1,1

ϕ2
W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

Pm =
{
fθ(·) := 1

m

∑m
k=1 akϕ

(
⟨w k , ·⟩

)}
ℓ1-path norm

∥θ∥P := 1
m

∑m
k=1 |ak |∥w k∥1

• semi-norm

• representation cost

• relations to Barron spaces B [1, 10]

• ∥f ∥B ≤ ∥θ∥P ≤ 2∥f ∥B
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Path norm, Barron spaces, RKHS

Consider a random features model [22, 15]

• first layer: w iid∼ µ ∈ P(W); only train the second layer

infinite many features fa(x) =
∫
W a(w)ϕ(x ,w)dµ(w)

Definition (RKHS and Barron space [9, 5])

Fp,µ := {fa : ∥a∥Lp(µ) <∞}, ∥f ∥Fp,µ := inf
f=fa
∥a∥Lp(µ)

For any 1 ≤ p ≤ ∞, we have

B = ∪µ∈P(W)Fp,µ , ∥f ∥B = inf
µ∈P(W)

∥f ∥Fp,µ

• RFMs ≡ kernel methods by taking p = 2 using Representer theorem [23]
• RFMs ̸≡ kernel methods if p < 2
• function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q
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• RFMs ≡ kernel methods by taking p = 2 using Representer theorem [23]
• RFMs ̸≡ kernel methods if p < 2
• function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q
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Our results: statistical guarantees

For the class of two-layer neural networks GR = {fθ ∈ Pm : ∥θ∥P ⩽ R}

f̂θ := argmin
fθ∈GR

1
n

n∑
i=1

(yi − fθ(x i ))
2 .

Theorem (Liu, Dadi, Cevher, JMLR 2024)

Under standard assumptions (bounded data, f ⋆ ∈ B), for two-layer
over-parameterized neural networks, we have∥∥f̂θ − f ⋆

∥∥2
L2
ρX

≲
R2

m
+ R2d

1
3 n−

d+2
2d+2 w .h.p.

n−
d+2
2d+2 is always faster than n−

1
2 : No curse of dimensionality!
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Sample complexity

Proposition (metric entropy)

For bounded data ∥x∥∞ ≤ 1, denote GR = {fθ ∈ Pm : ∥θ∥P ⩽ R}, the metric
entropy of G1 can be bounded by

logN2(G1, ϵ) ⩽ Cdϵ−
2d
d+2 , ∀ϵ > 0 and d ≥ 5 ,

with some universal constant C independent of d .

log d d poly(d) exp(d)?

ϵ−2 ϵ−
2d
d+2 ϵ−

2d
d+3

[9] Ours [27] minimax [25](Siegel,Xu, 2024)

The “best” trade-off between ϵ and d .
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Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!

Do some Barron functions can be learned by two-layer NNs, both
statistically and computationally efficient?
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Computational-to-statistical gaps

Optimization in Barron spaces is NP hard: curse of dimensionality!

RKHS hyper-RKHS Barron Sobolev

Statistically-efficient

(Bach 2017) (Barron 1993; E et al. 2021) (Schmidt-Hieber 2020)(Chen et al. 2023)(Ong et al. 2004; 
Liu et al. 2021)

(Aronszajn 1950; 
Bach 2017)

Computationally-efficient Computationally-inefficient

Statistically
inefficient
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Learning with multiple ReLU neurons

Can we learn multiple ReLU neurons by two-layer NNs, both
statistically and computationally efficient?

f ⋆(x) =
k∑

j=1

ajσ(⟨ v j , x⟩), k = O(1)

∥f̂ − f ⋆∥L2(dµ) ≤ ϵ from {x i , f
⋆(x i )}ni=1 with x i ∼ N (0, I d)

Theorem ([6] PAC learning f ⋆ under Gaussian measure)

There exists an algorithm that requires time/samples at (d/ϵ)O(k2)

• correlational statistical query (CSQ): |q̃ − Ex,y [ψ(x)y ]| ≤ τ
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How does student(s) become teacher(s) under GD training?

Learning multi ReLU neurons by two-layer NN via online SGD

L(W ) =
1
2
Ex∼N (0,I d )

( m∑
i=1

σ(⟨w i , x⟩)− f ⋆(x)
)2

• Gaussian initialization w i ∼ N (0, σ2I d)

• angle: θij ≜ ∠(w i , v j)

Assumption

• diverse teacher neurons: {v j}kj=1 are orthogonal and ∥v j∥2 = const

• warm start: the smallest angle not close to orthogonal
◦ weak recovery: ⟨w i , v i⋆⟩ ≫ ⟨w i , v j⟩
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How does student(s) become teacher(s) under GD training?

• align θi∗ → 0 norm converge then fit
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Theorem (Zhu, Liu, Cevher, 2024)

For sufficiently small initialization and step-size σ, η = o(m−k2
), then there

exists a time T2 = 1
η such that ∀T ∈ N and i ∈ [m],

L(W (T + T2)) ≤ O
(

1
T 3

)
, ∥w i (T + T2)∥2 = Θ

(
k∥v∥2
m

)
w .h.p .
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Take-away messages

• model size -> size of weights -> path norm -> Barron spaces
• statistical guarantees with improved sample complexity
• computational-statistical gap -> learning with multiple ReLU neurons

We’re organizing one workshop at NeurIPS 2024!
Fine-Tuning in Modern Machine Learning: Principles and Scalability
https://sites.google.com/view/neurips2024-ftw/home

Invited speakers

Dimitris Papailiopoulos
 (UW-Madison)

Jason Lee
(Princeton)

Azalia Mirhoseini 
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Panelist

Taiji Suzuki 
(UTokyo/RIKEN)

Tri Dao
(Princeton)

Azalia Mirhoseini 
(Stanford/DeepMind)

Quanquan Gu
(UCLA)

Danqi Chen
(Princeton)

Yuandong Tian
(Meta)
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