From kernel methods to neural networks: double descent, function spaces, curse of dimensionality

## Fanghui Liu

Department of Computer Science, University of Warwick, UK Centre for Discrete Mathematics and its Applications (DIMAP), Warwick

```
at Gatsby Computational Neuroscience Unit, UCL
```



Over-parameterization: more parameters than training data


## Surprises in modern neural networks: double descent


(a) Training and test error on ResNet18 [1]

(b) Double descent [2] (Belkin, Hsu, Ma, Mandal, 2019).

## Surprises in modern neural networks: double descent


(a) Training and test error on ResNet18 [1]

(b) Double descent [2] (Belkin, Hsu, Ma, Mandal, 2019).

## Observations: beyond bias-variance trade-off

- 1) Monotonic decreasing in the overparameterized regime
- 2) Global minimum when \#parameters is infinite
- 3) Peak at the interpolation thresholds


## Background: Two-layer neural networks



$$
f_{m}(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{i=1}^{m} a_{i} \phi\left(\boldsymbol{x}, \boldsymbol{w}_{i}\right), \quad \boldsymbol{\theta}:=\left\{\left(a_{i}, \boldsymbol{w}_{i}\right)\right\}_{i=1}^{m}
$$

$\phi \quad \phi: \mathcal{X} \times \mathcal{W} \rightarrow \mathbb{R}$, e.g., ReLU: $\phi(\boldsymbol{x}, \boldsymbol{w})=\max (\langle\boldsymbol{x}, \boldsymbol{w}\rangle, 0)$

## Background: Two-layer neural networks



$$
f_{m}(\boldsymbol{x} ; \boldsymbol{\theta})=\sum_{i=1}^{m} a_{i} \phi\left(\boldsymbol{x}, \boldsymbol{w}_{i}\right), \quad \boldsymbol{\theta}:=\left\{\left(a_{i}, \boldsymbol{w}_{i}\right)\right\}_{i=1}^{m}
$$

- $\phi: \mathcal{X} \times \mathcal{W} \rightarrow \mathbb{R}$, e.g., ReLU: $\phi(\boldsymbol{x}, \boldsymbol{w})=\max (\langle\boldsymbol{x}, \boldsymbol{w}\rangle, 0)$
- Random features models (RFMs) [3]:
- $\left\{\boldsymbol{w}_{i}\right\}_{i=1}^{m} \stackrel{i i d}{\sim} \mu$ for a given $\mu \in \mathcal{P}(\mathcal{W})$
- only train the second layer

Recall RFMs in high-dimensional asymptotic setting (Mei and Montanari, 2022)

- random feature regression with $\widehat{\boldsymbol{a}}_{\lambda}=\arg \min _{a} \widehat{\mathcal{E}}_{\lambda}(\boldsymbol{a})$

$$
\widehat{\mathcal{E}}_{\lambda}(\boldsymbol{a})=\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{j}\right\rangle\right)\right]^{2}+\frac{\lambda m}{d}\|\boldsymbol{a}\|_{2}^{2}
$$

Recall RFMs in high-dimensional asymptotic setting (Mei and Montanari, 2022)

- random feature regression with $\widehat{\boldsymbol{a}}_{\lambda}=\arg \min _{\boldsymbol{a}} \widehat{\mathcal{E}}_{\lambda}(\boldsymbol{a})$

$$
\begin{gathered}
\widehat{\mathcal{E}}_{\lambda}(\boldsymbol{a})=\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{j}\right\rangle\right)\right]^{2}+\frac{\lambda m}{d}\|\boldsymbol{a}\|_{2}^{2} \\
\mathcal{E}\left(\boldsymbol{a}, f_{\rho}\right)=\mathbb{E}_{\boldsymbol{x}, y}\left[f_{\rho}(\boldsymbol{x})-\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{j}\right\rangle\right)\right]^{2}
\end{gathered}
$$

Recall RFMs in high-dimensional asymptotic setting (Mei and Montanari, 2022)

- random feature regression with $\widehat{\boldsymbol{a}}_{\lambda}=\arg \min _{\boldsymbol{a}} \widehat{\mathcal{E}}_{\lambda}(\boldsymbol{a})$

$$
\begin{gathered}
\widehat{\mathcal{E}}_{\lambda}(\boldsymbol{a})=\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{j}\right\rangle\right)\right]^{2}+\frac{\lambda m}{d}\|\boldsymbol{a}\|_{2}^{2} \\
\mathcal{E}\left(\boldsymbol{a}, f_{\rho}\right)=\mathbb{E}_{\boldsymbol{x}, y}\left[f_{\rho}(\boldsymbol{x})-\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{j}\right\rangle\right)\right]^{2}
\end{gathered}
$$

## Theorem (double descent of RFMs [4])

Under proper assumptions, if target function is linear, under the high-dimensional setting

- $n, m, d \rightarrow \infty, m / d \rightarrow \psi_{1}$ and $n / d \rightarrow \psi_{2}$ as $d \rightarrow \infty$ with $\psi_{1}, \psi_{2} \in(0, \infty)$

Recall RFMs in high-dimensional asymptotic setting (Mei and Montanari, 2022)

- random feature regression with $\widehat{\boldsymbol{a}}_{\lambda}=\arg \min _{\boldsymbol{a}} \widehat{\mathcal{E}}_{\lambda}(\boldsymbol{a})$

$$
\begin{gathered}
\widehat{\mathcal{E}}_{\lambda}(\boldsymbol{a})=\frac{1}{n} \sum_{i=1}^{n}\left[y_{i}-\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{j}\right\rangle\right)\right]^{2}+\frac{\lambda m}{d}\|\boldsymbol{a}\|_{2}^{2} \\
\mathcal{E}\left(\boldsymbol{a}, f_{\rho}\right)=\mathbb{E}_{\boldsymbol{x}, y}\left[f_{\rho}(\boldsymbol{x})-\frac{1}{m} \sum_{j=1}^{m} a_{j} \sigma\left(\left\langle\boldsymbol{x}_{i}, \boldsymbol{w}_{j}\right\rangle\right)\right]^{2}
\end{gathered}
$$

## Theorem (double descent of RFMs [4])

Under proper assumptions, if target function is linear, under the high-dimensional setting

- $n, m, d \rightarrow \infty, m / d \rightarrow \psi_{1}$ and $n / d \rightarrow \psi_{2}$ as $d \rightarrow \infty$ with $\psi_{1}, \psi_{2} \in(0, \infty)$

$$
\mathcal{E}\left(\widehat{\boldsymbol{a}}_{\lambda}, f_{\rho}\right)=\text { Bias }+ \text { Variance }+o_{d, \mathbb{P}}(1) .
$$

observations 1), 2), 3) for double descent can be theoretically proved.

## Questions on high dimensional kernel methods

high dimensional kernel methods: can only learn linear function! [5] (Ghorbani, Mei, Misiakiewicz, Montanari, 2021)

## Questions on high dimensional kernel methods

high dimensional kernel methods: can only learn linear function! [5] (Ghorbani, Mei, Misiakiewicz, Montanari, 2021)

- asymptotic expansion under high dimensions [6] (El Karoui, 2010) under the setting of $n, d \rightarrow \infty, n / d \rightarrow \psi_{1}$ as $d \rightarrow \infty$ with $\psi_{1} \in(0, \infty)$, we have

$$
\left\|\boldsymbol{K}-\left(a \boldsymbol{X} \boldsymbol{X}^{\top}+b \boldsymbol{I}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0 \text { when } d \rightarrow \infty \quad \text { for some parameters } a, b
$$

## Questions on high dimensional kernel methods

high dimensional kernel methods: can only learn linear function! [5] (Ghorbani, Mei, Misiakiewicz, Montanari, 2021)

- asymptotic expansion under high dimensions [6] (El Karoui, 2010) under the setting of $n, d \rightarrow \infty, n / d \rightarrow \psi_{1}$ as $d \rightarrow \infty$ with $\psi_{1} \in(0, \infty)$, we have

$$
\left\|\boldsymbol{K}-\left(a \boldsymbol{X} \boldsymbol{X}^{\top}+b \boldsymbol{I}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0 \text { when } d \rightarrow \infty \quad \text { for some parameters } a, b
$$

- $\|f\|_{\mathcal{H}}<\infty$ when $d \rightarrow \infty$ ?


## Example (a linear function $f: \mathbb{S}^{d} \rightarrow \mathbb{R}$ such that $f(\boldsymbol{x})=\boldsymbol{v}^{\top} \boldsymbol{x}$ for a certain $\boldsymbol{v} \in \mathbb{S}^{d}$ )

- zero-order arc-cosine kernel $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\int_{\mathbb{S}^{d}} 1_{\left\{\boldsymbol{w}^{\top} \boldsymbol{x} \geq 0\right\}} 1_{\left\{\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime} \geq 0\right\}} \mathrm{d} \mu(\boldsymbol{w})$
$\Rightarrow\|f\|_{\mathcal{H}}=\frac{2 d \pi}{d-1} \pi<4 \pi$ [7] (Bach 2017)


## Questions on high dimensional kernel methods

high dimensional kernel methods: can only learn linear function! [5] (Ghorbani, Mei, Misiakiewicz, Montanari, 2021)

- asymptotic expansion under high dimensions [6] (El Karoui, 2010) under the setting of $n, d \rightarrow \infty, n / d \rightarrow \psi_{1}$ as $d \rightarrow \infty$ with $\psi_{1} \in(0, \infty)$, we have

$$
\left\|\boldsymbol{K}-\left(a \boldsymbol{X} \boldsymbol{X}^{\top}+b \boldsymbol{I}\right)\right\|_{2} \xrightarrow{\mathbb{P}} 0 \text { when } d \rightarrow \infty \quad \text { for some parameters } a, b
$$

- $\|f\|_{\mathcal{H}}<\infty$ when $d \rightarrow \infty$ ?


## Example (a linear function $f: \mathbb{S}^{d} \rightarrow \mathbb{R}$ such that $f(\boldsymbol{x})=\boldsymbol{v}^{\top} \boldsymbol{x}$ for a certain $\boldsymbol{v} \in \mathbb{S}^{d}$ )

- zero-order arc-cosine kernel $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\int_{\mathbb{S}^{d}} 1_{\left\{\boldsymbol{w}^{\top} \boldsymbol{x} \geq 0\right\}} 1_{\left\{\boldsymbol{w}^{\top} \boldsymbol{x}^{\prime} \geq 0\right\}} \mathrm{d} \mu(\boldsymbol{w})$
$\Rightarrow\|f\|_{\mathcal{H}}=\frac{2 d \pi}{d-1} \pi<4 \pi$ [7] (Bach 2017)
- first-order arc-cosine kernel, we have $\|f\|_{\mathcal{H}} \asymp C \sqrt{d}$ for some constant $C$ independent of $d$.


## Motivation

- high dimension vs. fixed dimension
- from asymptotic to non-asymptotic
- two-layer neural networks trained by SGD


## Motivation

- high dimension vs. fixed dimension
- from asymptotic to non-asymptotic
- two-layer neural networks trained by SGD
- Analysis
- SGD: implicit regularization $\rightarrow$ without $\lambda$
- dimension-free SGD bound
- multiple randomness sources
- data sampling, label noise, Gaussian initialization, stochastic gradients


## Motivation

- high dimension vs. fixed dimension
- from asymptotic to non-asymptotic
- two-layer neural networks trained by SGD
- Analysis
- SGD: implicit regularization $\rightarrow$ without $\lambda$
- dimension-free SGD bound
- multiple randomness sources
- data sampling, label noise, Gaussian initialization, stochastic gradients

> observations 1), 2), 3) can be still proved!

## Problem settings: function space and SGD



## function space

$$
\mathcal{H}:=\left\{f \in L_{\rho_{X}}^{2} \mid \quad f(\boldsymbol{x})=\langle\boldsymbol{a}, \varphi(\boldsymbol{x})\rangle\right\}, \quad \boldsymbol{W}_{i j} \sim \mathcal{N}(0,1)
$$

covariance operator: $\Sigma_{m}:=\mathbb{E}_{\boldsymbol{x}}[\varphi(\boldsymbol{x}) \otimes \varphi(\boldsymbol{x})]$ expected covariance operator: $\Sigma_{m}:=\mathbb{E}_{\boldsymbol{x}, \boldsymbol{W}}[\varphi(\boldsymbol{x}) \otimes \varphi(\boldsymbol{x})]$
random features mapping:
$\varphi(\boldsymbol{x}):=\frac{1}{\sqrt{m}} \sigma\left(\frac{W_{\boldsymbol{x}}}{\sqrt{d}}\right) \quad W_{i j} \sim \mathcal{N}(0,1)$

## Problem settings: function space and SGD



Online SGD: one-pass, average output, adaptive step-size...

$$
\boldsymbol{a}_{t}=\boldsymbol{a}_{t-1}+\gamma_{t}\left[y_{t}-\left\langle\boldsymbol{a}_{t-1}, \varphi\left(\boldsymbol{x}_{t}\right)\right\rangle\right] \varphi\left(\boldsymbol{x}_{t}\right), \quad t=1,2, \ldots n .
$$

- averaged output: $\overline{\boldsymbol{a}}_{n}:=\frac{1}{n} \sum_{t=0}^{n-1} \boldsymbol{a}_{t} \Longrightarrow \bar{f}_{n}=\left\langle\varphi(\cdot), \overline{\boldsymbol{a}}_{n}\right\rangle$
- adaptive step-size: $\gamma_{t}:=\gamma_{0} t^{-\zeta}, \zeta \in[0,1)$
random features mapping:
$\varphi(\boldsymbol{x}):=\frac{1}{\sqrt{m}} \sigma\left(\frac{W_{\boldsymbol{x}}}{\sqrt{d}}\right) \quad W_{i j} \sim \mathcal{N}(0,1)$


## Problem settings: function space and SGD


random features mapping:
$\varphi(\boldsymbol{x}):=\frac{1}{\sqrt{m}} \sigma\left(\frac{\boldsymbol{W} \boldsymbol{x}}{\sqrt{d}}\right) \quad W_{i j} \sim \mathcal{N}(0,1)$

Online SGD: one-pass, average output, adaptive step-size...

$$
\boldsymbol{a}_{t}=\boldsymbol{a}_{t-1}+\gamma_{t}\left[y_{t}-\left\langle\boldsymbol{a}_{t-1}, \varphi\left(\boldsymbol{x}_{t}\right)\right\rangle\right] \varphi\left(\boldsymbol{x}_{t}\right), \quad t=1,2, \ldots n .
$$

- averaged output: $\overline{\boldsymbol{a}}_{n}:=\frac{1}{n} \sum_{t=0}^{n-1} \boldsymbol{a}_{t} \Longrightarrow \bar{f}_{n}=\left\langle\varphi(\cdot), \overline{\boldsymbol{a}}_{n}\right\rangle$
- adaptive step-size: $\gamma_{t}:=\gamma_{0} t^{-\zeta}, \zeta \in[0,1)$


## Averaged expected risk

- optimal solution: $f^{*}=\arg \min _{f \in \mathcal{H}}\left\|f-f_{\rho}\right\|_{L_{\rho_{X}}^{2}}^{2}$ with $\left\|f^{*}\right\|_{\mathcal{H}}<\infty$
- averaged excess risk:
$\mathbb{E}\left\|\bar{f}_{n}-f^{*}\right\|_{L_{\rho_{X}}^{2}}^{2}=\mathbb{E}_{\boldsymbol{X}, \boldsymbol{W}, \boldsymbol{\varepsilon}}\left\langle\bar{f}_{n}-f^{*}, \Sigma_{m}\left(\bar{f}_{n}-f^{*}\right)\right\rangle$


## Assumptions

## Assumption (Basic assumptions)

- non-asymptotic: $\|\boldsymbol{x}\|_{2}^{2} \leq \mathcal{O}(d), \Sigma_{d}:=\mathbb{E}_{\boldsymbol{x}}[\boldsymbol{x} \otimes \boldsymbol{x}]$ with $\left\|\Sigma_{d}\right\|_{2}<\infty$
- boundedness of $f^{*}:\left\|f^{*}\right\|_{\mathcal{H}}<\infty$
- activation function: $\sigma(\cdot)$ : Lipschitz continuous
- label noise: $\mathbb{E}(\varepsilon)=0$ and $\mathbb{E}\left(\varepsilon^{2}\right)=\tau^{2}$


## Assumptions

## Assumption (Basic assumptions)

- non-asymptotic: $\|\boldsymbol{x}\|_{2}^{2} \leq \mathcal{O}(d), \Sigma_{d}:=\mathbb{E}_{\boldsymbol{x}}[\boldsymbol{x} \otimes \boldsymbol{x}]$ with $\left\|\Sigma_{d}\right\|_{2}<\infty$
- boundedness of $f^{*}:\left\|f^{*}\right\|_{\mathcal{H}}<\infty$
- activation function: $\sigma(\cdot)$ : Lipschitz continuous
- label noise: $\mathbb{E}(\varepsilon)=0$ and $\mathbb{E}\left(\varepsilon^{2}\right)=\tau^{2}$


## Assumption (Fourth moment condition)

for any PSD operator $A$, we assume

$$
\mathbb{E}_{\boldsymbol{W}}\left[\Sigma_{m} A \Sigma_{m}\right] \leqslant r^{\prime} \mathbb{E}_{\boldsymbol{W}}\left[\operatorname{Tr}\left(\Sigma_{m} A\right) \Sigma_{m}\right] \leqslant r \operatorname{Tr}\left(\widetilde{\Sigma}_{m} A\right) \widetilde{\Sigma}_{m}
$$

## Remark:

- the special case $A:=I$ can be proved.
- holds for sub-Gaussian data.
- widely used in SGD analysis [8, 9, 10]


## Main results: bias-variance decomposition

Define $\eta_{t}:=f_{t}-f^{*}$, we have

$$
\eta_{t}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right]\left(f_{t-1}-f^{*}\right)+\gamma_{t} \varepsilon_{t} \varphi\left(\boldsymbol{x}_{t}\right),
$$

## Main results: bias-variance decomposition

Define $\eta_{t}:=f_{t}-f^{*}$, we have

$$
\begin{gathered}
\eta_{t}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right]\left(f_{t-1}-f^{*}\right)+\gamma_{t} \varepsilon_{t} \varphi\left(\boldsymbol{x}_{t}\right), \\
\eta_{t}^{\text {bias }}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right] \eta_{t-1}^{\text {bias }}, \quad \eta_{0}^{\text {bias }}=f^{*},
\end{gathered}
$$

## Main results: bias-variance decomposition

Define $\eta_{t}:=f_{t}-f^{*}$, we have

$$
\begin{gathered}
\eta_{t}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right]\left(f_{t-1}-f^{*}\right)+\gamma_{t} \varepsilon_{t} \varphi\left(\boldsymbol{x}_{t}\right), \\
\eta_{t}^{\text {bias }}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right] \eta_{t-1}^{\text {bias }}, \quad \eta_{0}^{\text {bias }}=f^{*}, \\
\eta_{t}^{\text {var }}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right] \eta_{t-1}^{\text {var }}+\gamma_{t} \varepsilon_{t} \varphi\left(\boldsymbol{x}_{t}\right), \quad \eta_{0}^{\text {var }}=0 .
\end{gathered}
$$

## Main results: bias-variance decomposition

Define $\eta_{t}:=f_{t}-f^{*}$, we have

$$
\begin{gathered}
\eta_{t}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right]\left(f_{t-1}-f^{*}\right)+\gamma_{t} \varepsilon_{t} \varphi\left(\boldsymbol{x}_{t}\right), \\
\eta_{t}^{\text {bias }}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right] \eta_{t-1}^{\text {bias }}, \quad \eta_{0}^{\text {bias }}=f^{*}, \\
\eta_{t}^{\text {var }}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right] \eta_{t-1}^{\text {var }}+\gamma_{t} \varepsilon_{t} \varphi\left(\boldsymbol{x}_{t}\right), \quad \eta_{0}^{\text {var }}=0 .
\end{gathered}
$$

## Theorem (Bias-variance decomposition)

Under the above-mentioned assumptions, if the step-size $\gamma_{t}:=\gamma_{0} t^{-\zeta}$ with $\zeta \in[0,1)$ satisfies $\gamma_{0}<C$, we have

$$
\mathbb{E}\left\|\bar{f}_{n}-f^{*}\right\|_{L_{\rho_{X}}^{2}}^{2}=\underbrace{\mathbb{E}_{\boldsymbol{X}, \boldsymbol{W}}\left\langle\bar{\eta}_{n}^{\text {bias }}, \Sigma_{m} \bar{\eta}_{n}^{\text {bias }}\right\rangle}_{:=\text {Bias }}+\underbrace{\mathbb{E}_{\boldsymbol{X}, \boldsymbol{W}, \boldsymbol{\varepsilon}}\left\langle\bar{\eta}_{n}^{\text {var }}, \Sigma_{m} \bar{\eta}_{n}^{\text {var }}\right\rangle}_{:=\text {Variance }} .
$$

## Proof framework: randomness decoupling



$$
\text { Bias }: \quad \eta_{t}^{\mathrm{bias}}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right] \eta_{t-1}^{\mathrm{bias}}
$$

## Proof framework: randomness decoupling

$$
\text { excess risk } \mathbb{E}_{\boldsymbol{X}, \boldsymbol{W}, \boldsymbol{\varepsilon}}\left\langle\bar{\eta}_{n}, \Sigma_{m} \bar{\eta}_{n}\right\rangle
$$



$$
\text { Bias }: \quad \eta_{t}^{\text {bias }}=\left[I-\gamma_{t} \varphi\left(\boldsymbol{x}_{t}\right) \otimes \varphi\left(\boldsymbol{x}_{t}\right)\right] \eta_{t-1}^{\text {bias }}
$$

Define "semi-stochastic" version: $\eta_{t}^{\mathrm{bX}}=\left(I-\gamma_{t} \Sigma_{m}\right) \eta_{t-1}^{\mathrm{bX}}, \quad \eta_{t}^{\mathrm{bXW}}=\left(I-\gamma_{t} \widetilde{\Sigma}_{m}\right) \eta_{t-1}^{\mathrm{bXW}}$,

- $11:=\mathbb{E}_{\boldsymbol{X}, \boldsymbol{W}}\left[\left\langle\bar{\eta}_{n}^{\mathrm{bias}}-\bar{\eta}_{n}^{\mathrm{bX}}, \Sigma_{m}\left(\bar{\eta}_{n}^{\mathrm{bias}}-\bar{\eta}_{n}^{\mathrm{bX}}\right)\right\rangle\right]$
- $22:=\mathbb{E}_{W}\left[\left\langle\bar{\eta}_{n}^{\mathrm{bX}}-\bar{\eta}_{n}^{\mathrm{bXW}}, \Sigma_{m}\left(\bar{\eta}_{n}^{\mathrm{bX}}-\bar{\eta}_{n}^{\mathrm{bXW}}\right)\right\rangle\right]$
- $\mathrm{B} 3:=\left\langle\bar{\eta}_{n}^{\mathrm{bxW}}, \widetilde{\Sigma}_{m} \bar{\eta}_{n}^{\mathrm{bxW}}\right\rangle$


## Proof framework: properties of covariance operators

## Properties of $\widetilde{\Sigma}_{m}$

- the diagonal elements are the same $a:=\left[\widetilde{\Sigma}_{m}\right]_{i i}, \forall i \in[m]$
- the non-diagonal elements are the same $b:=\left[\widetilde{\Sigma}_{m}\right]_{i j}, \forall i, j \in[m], i \neq j$

$$
\widetilde{\Sigma}_{m}=(a-b) \boldsymbol{I}_{m}+b \mathbf{1 1}{ }^{\top}
$$

- two distinct eigenvalues: $\widetilde{\lambda}_{1}=a-b+b m \sim \mathcal{O}(1), \widetilde{\lambda}_{2}=\cdots=\widetilde{\lambda}_{m}=a-b \sim \mathcal{O}(1 / m)$


## Proof framework: properties of covariance operators

## Properties of $\widetilde{\Sigma}_{m}$

- the diagonal elements are the same $a:=\left[\widetilde{\Sigma}_{m}\right]_{i i}, \forall i \in[m]$
- the non-diagonal elements are the same $b:=\left[\widetilde{\Sigma}_{m}\right]_{i j}, \forall i, j \in[m], i \neq j$

$$
\widetilde{\Sigma}_{m}=(a-b) \boldsymbol{I}_{m}+b \mathbf{1 1}{ }^{\top}
$$

- two distinct eigenvalues: $\widetilde{\lambda}_{1}=a-b+b m \sim \mathcal{O}(1), \widetilde{\lambda}_{2}=\cdots=\widetilde{\lambda}_{m}=a-b \sim \mathcal{O}(1 / m)$


## Example (ReLU activation)

- $\left(\widetilde{\Sigma}_{m}\right)_{i i}=\frac{1}{2 m d} \operatorname{Tr}\left(\Sigma_{d}\right)$
- $\left(\widetilde{\Sigma}_{m}\right)_{i j}=\frac{1}{2 m d \pi} \operatorname{Tr}\left(\Sigma_{d}\right)$


## Proof framework: properties of covariance operators

## Properties of $\widetilde{\Sigma}_{m}$

- the diagonal elements are the same $a:=\left[\widetilde{\Sigma}_{m}\right]_{i i}, \forall i \in[m]$
- the non-diagonal elements are the same $b:=\left[\widetilde{\Sigma}_{m}\right]_{i j}, \forall i, j \in[m], i \neq j$

$$
\widetilde{\Sigma}_{m}=(a-b) \boldsymbol{I}_{m}+b \mathbf{1 1}{ }^{\top}
$$

- two distinct eigenvalues: $\widetilde{\lambda}_{1}=a-b+b m \sim \mathcal{O}(1), \widetilde{\lambda}_{2}=\cdots=\widetilde{\lambda}_{m}=a-b \sim \mathcal{O}(1 / m)$


## Example (ReLU activation)

- $\left(\widetilde{\Sigma}_{m}\right)_{i i}=\frac{1}{2 m d} \operatorname{Tr}\left(\Sigma_{d}\right)$
- $\left(\widetilde{\Sigma}_{m}\right)_{i j}=\frac{1}{2 m d \pi} \operatorname{Tr}\left(\Sigma_{d}\right)$


## sub-exponential random variables

$\left\|\Sigma_{m}\right\|_{2},\left\|\Sigma_{m}-\widetilde{\Sigma}_{m}\right\|_{2}, \operatorname{Tr}\left(\Sigma_{m}\right)$, and $\left\|\widetilde{\Sigma}_{m}^{-1} \mathbb{E}_{W}\left(\Sigma_{m}^{2}\right)\right\|_{2}$ with $\mathcal{O}(1)$ sub-exponential norm order

## Main theorem

## Theorem (Liu, Suykens, Volkan, NeurIPS 2022)

Under the above-mentioned assumptions, if the step-size $\gamma_{t}:=\gamma_{0} t^{-\zeta}$ with $\zeta \in[0,1)$ satisfies $\gamma_{0}<C$, we have

$$
\begin{gathered}
\text { Bias } \lesssim \gamma_{0} r^{\prime} n^{\zeta-1}\left\|f^{*}\right\|^{2} \sim \mathcal{O}\left(n^{\zeta-1}\right) . \\
\text { Variance } \lesssim \gamma_{0} r^{\prime} \tau^{2}\left\{\begin{array}{l}
m n^{\zeta-1}, \text { if } m \leqslant n \\
1+n^{\zeta-1}+\frac{n}{m}, \text { if } m>n
\end{array}\right.
\end{gathered}
$$


(c) bias

(d) variance

(e) excess risk

## Discussion

Constant step-size SGD doesn't hurt the convergence rate.

- under-parameterized regime (by taking $m=\mathcal{O}(\sqrt{n})$ )

$$
\mathbb{E}\left\|\bar{f}_{n}-f^{*}\right\|_{L_{\rho_{X}}^{2}}^{2}=\underbrace{\text { Bias }}_{\mathcal{O}\left(\frac{1}{n}\right)}+\underbrace{\text { Variance }}_{\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)} \leq \mathcal{O}\left(\frac{1}{\sqrt{n}}\right),
$$

matches [11] (Carratino, Rudi, Rosasco, 2018) under one-pass, one-batch, SGD... ${ }^{1}$

- over-parameterized regime: matches [12] (Belkin, Hsu, Xu, 2020)
- no lower bound: Bias $\leqslant 3(\mathrm{~B} 1+\mathrm{B} 2+\mathrm{B} 3)$ based on Minkowski inequality

[^0]
## Discussion

Constant step-size SGD doesn't hurt the convergence rate.

- under-parameterized regime (by taking $m=\mathcal{O}(\sqrt{n})$ )

$$
\mathbb{E}\left\|\bar{f}_{n}-f^{*}\right\|_{L_{\rho_{X}}^{2}}^{2}=\underbrace{\text { Bias }}_{\mathcal{O}\left(\frac{1}{n}\right)}+\underbrace{\text { Variance }}_{\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)} \leq \mathcal{O}\left(\frac{1}{\sqrt{n}}\right),
$$

matches [11] (Carratino, Rudi, Rosasco, 2018) under one-pass, one-batch, SGD... ${ }^{1}$

- over-parameterized regime: matches [12] (Belkin, Hsu, Xu, 2020)
- no lower bound: Bias $\leqslant 3(\mathrm{~B} 1+\mathrm{B} 2+\mathrm{B} 3)$ based on Minkowski inequality

Do you believe double descent?

[^1]
## Do you believe double descent?



Figure: Optimal early stopping on ResNet18 [1]

What is the "right" model complexity?

## What is the "right" model complexity?

- Complexity of a prediction rule, e.g.,
- number of parameters
- norm of functions in RKHS
- norm of parameter vector




Figure: Source from lectures [Stanford CS229].

## What is the "right" model complexity?

- Complexity of a prediction rule, e.g.,
- number of parameters
- norm of functions in RKHS
- norm of parameter vector


## kernel methods to neural networks

- model complexity: from \#params to norm constrained
- function space: from RKHS to ?

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\phi(\boldsymbol{x}), \phi\left(\boldsymbol{x}^{\prime}\right)\right\rangle_{\mathcal{H}}
$$

## What is the "right" model complexity?

- Complexity of a prediction rule, e.g.,
- number of parameters
- norm of functions in RKHS
- norm of parameter vector


## kernel methods to neural networks

- model complexity: from \#params to norm constrained
- function space: from RKHS to ?

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\phi(\boldsymbol{x}), \phi\left(\boldsymbol{x}^{\prime}\right)\right\rangle_{\mathcal{H}}
$$

- not data-adaptive
- RKHS is too small: curse of dimensionality [7, 13, 14]


## From RKHS to Barron space

- RKHS of RFMs:

$$
\hat{k}_{m}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\frac{1}{m} \sum_{i=1}^{m} \phi\left(\boldsymbol{x}, \boldsymbol{w}_{i}\right) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}_{i}\right) \rightarrow k_{\mu}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\int_{\mathcal{W}} \phi(\boldsymbol{x}, \boldsymbol{w}) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}\right) \mathrm{d} \mu(\boldsymbol{w})
$$

## From RKHS to Barron space

- RKHS of RFMs:

$$
\hat{k}_{m}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\frac{1}{m} \sum_{i=1}^{m} \phi\left(\boldsymbol{x}, \boldsymbol{w}_{i}\right) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}_{i}\right) \rightarrow k_{\mu}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\int_{\mathcal{W}} \phi(\boldsymbol{x}, \boldsymbol{w}) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}\right) \mathrm{d} \mu(\boldsymbol{w})
$$

Definition (Barron space [15] (E, Ma, Wu, 2021))

$$
\mathcal{B}=\cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{H}_{k_{\mu}}, \quad\|f\|_{\mathcal{B}}=\inf _{\mu \in \mathcal{P}(\mathcal{W})}\|f\|_{\mathcal{H}_{k_{\mu}}}
$$

## From RKHS to Barron space

- RKHS of RFMs:

$$
\hat{k}_{m}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\frac{1}{m} \sum_{i=1}^{m} \phi\left(\boldsymbol{x}, \boldsymbol{w}_{i}\right) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}_{i}\right) \rightarrow k_{\mu}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\int_{\mathcal{W}} \phi(\boldsymbol{x}, \boldsymbol{w}) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}\right) \mathrm{d} \mu(\boldsymbol{w})
$$

## Definition (Barron space [15] (E, Ma, Wu, 2021))

$$
\mathcal{B}=\cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{H}_{k_{\mu}}, \quad\|f\|_{\mathcal{B}}=\inf _{\mu \in \mathcal{P}(\mathcal{W})}\|f\|_{\mathcal{H}_{k_{\mu}}}
$$

Remark: $\circ$ Two-layer neural networks: data-adaptive kernel

## From RKHS to Barron space

- RKHS of RFMs:

$$
\hat{k}_{m}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\frac{1}{m} \sum_{i=1}^{m} \phi\left(\boldsymbol{x}, \boldsymbol{w}_{i}\right) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}_{i}\right) \rightarrow k_{\mu}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\int_{\mathcal{W}} \phi(\boldsymbol{x}, \boldsymbol{w}) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}\right) \mathrm{d} \mu(\boldsymbol{w})
$$

## Definition (Barron space [15] (E, Ma, Wu, 2021))

$$
\mathcal{B}=\cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{H}_{k_{\mu}}, \quad\|f\|_{\mathcal{B}}=\inf _{\mu \in \mathcal{P}(\mathcal{W})}\|f\|_{\mathcal{H}_{k_{\mu}}}
$$

Remark: ○ Two-layer neural networks: data-adaptive kernel

- equivalent to path norm $\|\boldsymbol{\Theta}\|_{\mathcal{P}}:=\frac{1}{m} \sum_{k=1}^{m}\left|a_{k}\right|\left\|\boldsymbol{w}_{k}\right\|_{1}$


## From RKHS to Barron space

- RKHS of RFMs:

$$
\hat{k}_{m}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\frac{1}{m} \sum_{i=1}^{m} \phi\left(\boldsymbol{x}, \boldsymbol{w}_{i}\right) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}_{i}\right) \rightarrow k_{\mu}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\int_{\mathcal{W}} \phi(\boldsymbol{x}, \boldsymbol{w}) \phi\left(\boldsymbol{x}^{\prime}, \boldsymbol{w}\right) \mathrm{d} \mu(\boldsymbol{w})
$$

## Definition (Barron space [15] (E, Ma, Wu, 2021))

$$
\mathcal{B}=\cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{H}_{k_{\mu}}, \quad\|f\|_{\mathcal{B}}=\inf _{\mu \in \mathcal{P}(\mathcal{W})}\|f\|_{\mathcal{H}_{k_{\mu}}}
$$

Remark: ○ Two-layer neural networks: data-adaptive kernel

- equivalent to path norm $\|\boldsymbol{\Theta}\|_{\mathcal{P}}:=\frac{1}{m} \sum_{k=1}^{m}\left|a_{k}\right|\left\|\boldsymbol{w}_{k}\right\|_{1}$
- parameter space vs. measure space
e.g., [7] (Bach, 2017), [16] (Bartolucci, Vito, Rosasco, Vigogna, 2022).

Our results: Learning with norm-constrained neural networks in Barron spaces

For the class of two-layer neural networks $\mathcal{F}_{m}$

$$
\boldsymbol{\theta}^{\star}=\underset{f_{\boldsymbol{\theta}} \in \mathcal{F}_{m}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)^{2}+\lambda\|\boldsymbol{\theta}\|_{\mathcal{P}} .
$$

## Our results: Learning with norm-constrained neural networks in Barron spaces

For the class of two-layer neural networks $\mathcal{F}_{m}$

$$
\boldsymbol{\theta}^{\star}=\underset{f_{\boldsymbol{\theta}} \in \mathcal{F}_{m}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)^{2}+\lambda\|\boldsymbol{\theta}\|_{\mathcal{P}}
$$

## Theorem (Liu, Dadi, Cevher, JMLR 2024)

Under proper assumptions, for two-layer over-parameterized neural networks, learning in Barron spaces leads to

$$
\left\|f_{\theta^{\star}}-f_{\rho}\right\|_{L_{\rho_{X}}^{2}}^{2} \lesssim \lambda+\frac{1}{m}+d^{2} n^{-\frac{d+2}{2 d+2}} \quad \text { w.h.p. }
$$

## Our results: Learning with norm-constrained neural networks in Barron spaces

For the class of two-layer neural networks $\mathcal{F}_{m}$

$$
\boldsymbol{\theta}^{\star}=\underset{f_{\boldsymbol{\theta}} \in \mathcal{F}_{m}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)^{2}+\lambda\|\boldsymbol{\theta}\|_{\mathcal{P}}
$$

## Theorem (Liu, Dadi, Cevher, JMLR 2024)

Under proper assumptions, for two-layer over-parameterized neural networks, learning in Barron spaces leads to

$$
\left\|f_{\theta^{\star}}-f_{\rho}\right\|_{L_{\rho_{X}}^{2}}^{2} \leqslant \lambda+\frac{1}{m}+d^{2} n^{-\frac{d+2}{2 d+2}} \quad \text { w.h.p. }
$$

## Remark:

- [17] (Siegel, Xu, 2022) on metric entropy

$$
\epsilon^{-\frac{2 d}{d+3}}{ }_{d} \lesssim \log \mathscr{N}_{2}\left(\mathcal{G}_{1}, \epsilon\right) \lesssim_{d} \epsilon^{-\frac{2 d}{d+3}} .
$$

## Our results: Learning with norm-constrained neural networks in Barron spaces

For the class of two-layer neural networks $\mathcal{F}_{m}$

$$
\boldsymbol{\theta}^{\star}=\underset{f_{\boldsymbol{\theta}} \in \mathcal{F}_{m}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)\right)^{2}+\lambda\|\boldsymbol{\theta}\|_{\mathcal{P}}
$$

## Theorem (Liu, Dadi, Cevher, JMLR 2024)

Under proper assumptions, for two-layer over-parameterized neural networks, learning in Barron spaces leads to

$$
\left\|f_{\theta^{\star}}-f_{\rho}\right\|_{L_{\rho_{X}}^{2}}^{2} \leqslant \lambda+\frac{1}{m}+d^{2} n^{-\frac{d+2}{2 d+2}} \quad \text { w.h.p. }
$$

## Remark:

- [17] (Siegel, Xu, 2022) on metric entropy

$$
\epsilon^{-\frac{2 d}{d+3}}{ }_{d} \leqslant \log \mathscr{N}_{2}\left(\mathcal{G}_{1}, \epsilon\right) \epsilon d^{2} \leqslant 6144 d^{5} \epsilon^{-\frac{2 d}{d+2}} \quad \text { [Ours] }
$$

Optimization in Barron spaces is difficult: curse of dimensionality!

|  | approximation | generalization | optimization |
| :---: | :---: | :---: | :---: |
| RKHS | CoD | $\mathcal{O}\left(n^{-\frac{1}{d}}\right)$ | - |
| Barron spaces | $\mathcal{O}\left(m^{-\frac{2 d}{d+3}}\right)$ | $\mathcal{O}\left(n^{-\frac{d+3}{2 d+3}}\right) ?$ | CoD |

Optimization in Barron spaces is difficult: curse of dimensionality!

|  | approximation | generalization | optimization |
| :---: | :---: | :---: | :---: |
| RKHS | CoD | $\mathcal{O}\left(n^{-\frac{1}{d}}\right)$ | - |
| Barron spaces | $\mathcal{O}\left(m^{-\frac{2 d}{d+3}}\right)$ | $\mathcal{O}\left(n^{-\frac{d+3}{2 d+3}}\right) ?$ | CoD |



What is the suitable function space of NNs, both statistically and computationally efficient?

What is the suitable function space of NNs, both statistically and computationally efficient?

## Thanks for your attention!

Q \& A
my homepage www.lfhsgre.org for more information!

## References I

[1] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: Where bigger models and more data hurt.
In International Conference on Learning Representations, 2019.
(Cited on pages 3, 4, and 35.)
[2] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal.
Reconciling modern machine-learning practice and the classical bias-variance trade-off.
the National Academy of Sciences, 116(32):15849-15854, 2019.
(Cited on pages 3 and 4.)
[3] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems, pages 1177-1184, 2007.
(Cited on pages 5 and 6.)
[4] Song Mei and Andrea Montanari.
The generalization error of random features regression: Precise asymptotics and the double descent curve.
Communications on Pure and Applied Mathematics, 75(4):667-766, 2022.
(Cited on pages 7, 8, 9, and 10.)

## References II

[5] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari.
Linearized two-layers neural networks in high dimension.
Annals of Statistics, 49(2):1029-1054, 2021.
(Cited on pages 11, 12, 13, and 14.)
[6] Noureddine El Karoui.
The spectrum of kernel random matrices.
Annals of Statistics, 38(1):1-50, 2010.
(Cited on pages 11, 12, 13, and 14.)
[7] Francis Bach.
Breaking the curse of dimensionality with convex neural networks.
Journal of Machine Learning Research, 18(1):629-681, 2017.
(Cited on pages 11, 12, 13, 14, 38, 39, 40, 41, 42, and 43.)
[8] Francis Bach and Eric Moulines.
Non-strongly-convex smooth stochastic approximation with convergence rate $o(1 / n)$.
Advances in Neural Information Processing Systems, 26:773-781, 2013.
(Cited on pages 21 and 22.)

## References III

[9] Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, Venkata Krishna Pillutla, and Aaron Sidford.
A markov chain theory approach to characterizing the minimax optimality of stochastic gradient descent (for least squares).
arXiv preprint arXiv:1710.09430, 2017.
(Cited on pages 21 and 22.)
[10] Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade.
Benign overfitting of constant-stepsize sgd for linear regression.
In Conference on Learning Theory, 2021.
(Cited on pages 21 and 22.)
[11] Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco.
Learning with SGD and random features.
In Advances in Neural Information Processing Systems, pages 10212-10223, 2018.
(Cited on pages 33 and 34.)
[12] Mikhail Belkin, Daniel Hsu, and Ji Xu.
Two models of double descent for weak features.
SIAM Journal on Mathematics of Data Science, 2(4):1167-1180, 2020.
(Cited on pages 33 and 34.)

## References IV

[13] Gilad Yehudai and Ohad Shamir.
On the power and limitations of random features for understanding neural networks.
In Advances in Neural Information Processing Systems, pages 6594-6604, 2019.
(Cited on page 38.)
[14] Michael Celentano, Theodor Misiakiewicz, and Andrea Montanari.
Minimum complexity interpolation in random features models.
arXiv preprint arXiv:2103.15996, 2021.
(Cited on page 38.)
[15] Weinan E, Chao Ma, and Lei Wu.
The barron space and the flow-induced function spaces for neural network models.
Constructive Approximation, pages 1-38, 2021.
(Cited on pages 39, 40, 41, 42, and 43.)
[16] Francesca Bartolucci, Ernesto De Vito, Lorenzo Rosasco, and Stefano Vigogna. Understanding neural networks with reproducing kernel Banach spaces.
Applied and Computational Harmonic Analysis, 2023.
(Cited on pages 39, 40, 41, 42, and 43.)

## References V

[17] Jonathan W Siegel and Jinchao Xu.
Sharp bounds on the approximation rates, metric entropy, and $n$-widths of shallow neural networks. arXiv preprint arXiv:2101.12365, 2021.
(Cited on pages 44, 45, 46, and 47.)


[^0]:    ${ }^{1}$ but the selection on step-size is different

[^1]:    ${ }^{1}$ but the selection on step-size is different

