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In the era of machine learning (Pre-training)

relationship between data-centric, large model, huge compute resources
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From pre-training to (parameter-efficient) fine-tuning

e GPT3: 175 billion parameters
e Llama3.1: > 400 billion parameters
o Deepseek-v3: > 600 billion parameters
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Low-rank adaption (LoRA) for fine-tuning [ ]

WFT — WPre +A c Rka

e A~ AB with A € R9*" and B € R"*k
e initialization
[Aolj ~ N(0,0®) and [Bol; =0, a>0. (LoRA-init)



Low-rank adaption (LoRA) for fine-tuning [ ]

WFT — WPre +A c Rka

e A~ AB with A € R9*" and B € R"*k
e initialization
[Aolj ~ N(0,0®) and [Bol; =0, a>0. (LoRA-init)

updated by gradient-based algorithms, e.g., SGD, AdamW
obtain (At’ Bt)



Motivation: non-linear dynamics and subspace alignment

o Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

A I G'|[A
Lan th n * | + nonlinear term .
Bt+1 G Iy B,

e G': one-step full gradient (from full fine-tuning)
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Motivation: non-linear dynamics and subspace alignment

o Even for linear model (pre-training and fine-tuning), nonlinear dynamics...

A ] G'lla
Lan th n * | + nonlinear term .
Bt+1 G Iy B,

e G": one-step full gradient (from full fine-tuning)
e The dynamics (A;, B;) heavily depends on G*!

e QI: How to characterize low-rank dynamics of LoRA and the associated

subspace alignment in theory?

e Q2: How can our theoretical results contribute to algorithm design for
LoRA in practice?




Alignment and theory-grounded
algorithm
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Problem setting and assumptions

o Pre-trained model: known W% € R?*k and the ReLU activation &
fre(x) = {(xT W' e Rk linear .
o[(x" W¥)T] € R* nonlinear
o Unknown low-rank feature shift A: Wh = Wit A
o Rank(A) = r* < min{d, k} with unknown r*
o Downstream well-behaved data {(x;,y:)}"., for fine-tuning:

_ (7T,V|v/h)T eRK,  {x}V, "X sub-Gaussian, linear
o[(x" Wh)—r], {xitN, i N(0, 14) nonlinear
o We assume N > d, e.g., MetaMathQA, Code-Feedback, d = 1,024 and

N ~ 10°
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Full fine-tuning and LoRA updates
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Full fine-tuning and LoRA updates

o full fine-tuning (initialized at Wq := W¥)

)y L L) |xw - YH linear
2N HO‘(XW YH nonlinear
o LoRA update
i . HX(Wh—i-AB) YH linear
(A,B):=

2N H (X(Wh—l—AB)) YH nonlinear
o Gradient descent with different step-size, e.g., LoORA+ [1]

A1 = A. —mVal(A;, By)

B:iy1 = B: — 12VsL(A:, By)

o Evaluation by ||A;B; — A||g: optimization and generalization!
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Alignment on B,

o one-step full gradient: G* € RY*¥ and rank(G") = r*
G = —Vwl(WH) = LX (V- XW) = X Xa.

o SVD of A € RY%K be

v

vy

s 0

A=USV = [u ul] -

Theorem (Alignment between G° and B;)

For the linear setting, consider the LoRA updates with (LoRA-init). We have
H Vi (6)V,(B)|| =0, veen,.

op

Remark: B; = 1A} G* with Rank(B;) < r*



Alignment on A,

Theorem (Informal)

For r > r*, recall [AO]U NN(O a?) in (LoRA-init), for anye € (0,1),
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Alignment on A,

Theorem (Informal)

For r > r*, recall [Ao]; ~ N(0,a?) in (LoRA-init), for any € € (0,1),

choosing o = (’)(ed—i“ ||Gu||op), running GD with t* < —r\/ﬁ")\d DL

then we have
|V (6 U ()

<e,w.h.p.
op
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o Take the SVD of G*: G* = Ug:54: Vg

10



~ o T
o Take the SVD of G*: G* = Ug:54: Vg

~ ~1/2
Ao = \/’_}/I:UGh:I [:,1:r] SGh '
. (L:r] (Spectral-initialization)
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o Take the SVD of G*: G* = E(;ugcu V—(r;u
B ~ ~1/2
AO - \/’_}/|:UGH:| [:,1:r] |:SGh :l

(Spectral-initialization)

Bo= ﬁ[ﬁﬂ 11 [Vchr

Message

If we take the SVD of G* and choose (Spectral-initialization), for both
linear/nonlinear models, we can directly achieve the alignment at initialization.

|AoBo — Allr < €|Allop, w.p. 1— Cexp(—e2N)

10



example (1)

—— LoRA init
Spectral Init o

-~ Global Minimizers =

@ LoRAinit Start T~

% LoRA init End +

© Spec. Start ~[_ [ ‘ | ]

+ Spec. End I o

B 05,
0.0
—0.5

Figure 2: Comparison of the GD trajectories between LoRA and ours. A € R? and
B € R. The set of global minimizers is {af =2/t,a5 =1/t,b* =t |t € R}
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Toy example (I1): Phase portrait

Log-Transformed Surface with Phase Portrait and Trajectories

el
Phase Portrait (Negative Gradient)

I LoRA Init
I Spectral Init

log-transformed loss

12



One-step full gradient may suffice for low-rank fine-tuning!

Dataset MNLI SST-2 CoLA QNLI MRPC
Size 393k 67k 8.5k 105k 3.7k
Full 86.3340.00 94.754021 80.704024 93.191020 84.561073
Pre-trained - 89.79 59.03 49.28 63.48
One-step GD - 90.48 73.00 69.13 68.38

LoRAg 85.3040.04 94.041000 72841125 93.021007 68.38+0.01
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One-step full gradient may suffice for low-rank fine-tuning!

Dataset MNLI SST-2 CoLA QNLI MRPC

Size 393k 67k 8.5k 105k 3.7k

Full 86.331000 94.754021 80.704024 93.194102> 84.5640.73

Pre-trained - 89.79 59.03 49.28 63.48

One-step GD - 90.48 73.00 69.13 68.38

LoRAg 85.3040.04 94.041000 72.844125 93.024007 68.38+0.01
Time cost

e CoLA LoRA: 47s, one-step: <1s
e MRPC LoRA: 25s, one-step: <1s

13



Comparison with gradient alignment based work

o Motivation: make LoRA's gradients align to full fine-tuning [5]

Ay [OG“L 1 ! (LoRA-GA)
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Comparison with gradient alignment based work

o Motivation: make LoRA's gradients align to full fine-tuning [5]

Ay [OG”L:, B [Vaur (LoRA-GA)

[:,r+1:2r] ’
o best-2r approximation: rank(VaL(A;, B:)) + rank(VsL(A;, B;)) < 2r

o But! B will align to the right-side rank-r* singular subspace of G

Log Risk

<~ LoRA-GA (-)
-10 LoRA-GA (+)
—&— LoRA-One (-)
—4— LoRA-One
—154 —*— Spec. (-)
—e— Spec. (+)
0 25 50 75 100 0 25 50 75 100

Epoch Epoch
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Experiments




Key features in our LoRA-One algorithm

Algorithm 1 LoRA-One training for a specific layer

Input: Pre-trained weight W*, batched data {D,}];, LoRA rank r, LoRA
alpha «, loss function L

Output: W' + S A7Br

Compute Vw L(W?) and U, S,V « SVD(VWL(Wh))
Ao ﬁ U[:,l:r]

Bo ﬁ : V—[r:,l:r]

Wi wh— L

fort=1,..., T do

~ -1
G2« Val(A._1, BH)(BHBL1 + )\I,)
B T -1 T
G5 (At_lAt_l ¥ AI,) Vel(A:_1, B 1)

Update A, , B, + Adamw(af‘ : Gf)

end 15




Experimental results on fine-tuning Llama 2-7B

GSM8K  Human-eval
Fu|| 59.36;&0,35 35.31:&2.13
LORAg 46.89i0.05 15-67i0.60

LoRA-GAg 53.6040.13 20.4549.02
LORA—GA32 55-12i0.30 20.18i0,19
LORA—GA123 55.07;&0,13 23.05:&0.37

LoRA—Oneg 53.80i0'44 21-02i0.01
LoRA—One32 56.61:|:0.29 23.86:&0.01
LORA—One123 58.10:|:0.10 26.79;&0_21

Loss

16



Experiments on NLP tasks from GLUE

Dataset MNLI SST-2 CoLA QNLI MRPC
Size 393k 67k 8.5k 105k 3.7k
Full 86.3310.00 94.7510.21 80.7040.24 93.194022 84.5610.73
Pre-trained - 89.79 59.03 49.28 63.48
One-step GD - 90.48 73.00 69.13 68.38
LoRAg (Hu et al., 2022) 85304004 94.04.1000 72841195 93.021007 683841001
LoRA3 85231011 94.0810.05 70.6610.41 92.8710.05 67241058
LoRA28 85.531013 93964005 69451025 92911013 65.3640.31
LoRA+g (Hayou et al., 2024) 858141000 93.851024 77531020 93.141003 74431139
LoRA+32 85.884016 94151025 792910096 93.251008 79491064
LoRA+;98 86.0710.15 94.084030 78.5910.73 93.0610235 78.7640.12
P-LoRAs (Zhang & Pilanci, 2024) 85284015 93.882011 79584067 93002007 83914116
P-LoRA3, 85.074011 94.0841014 76.541129 93.001008 79491050
P-LoRA; 25 853841011 93961024 72041189 92981006 79.6641.44
LoRA-GAg (Wang et al., 2024a) 85702000 94111015 80572020 93182005 85291024
LoRA-GA3» 83321010 94491032 80.861023 93.061014 86.3640.42
LoRA-GA2s 84.7510.06 94.19:014 80951035 93121011 85461023
LoRA-Oneg (Ours) 85811003 94.69.1005 81.08-035 9322012 86.771053
LoRA-Onejss 86.08. 001 94731037 813405 93.19:1002 87341031
LoRA-Onejog 86.22.1 008 94.65:019 81.53.035 9334011 8840070

17



Ablation study

HEE | 0RA-One mmm | oRA-One (-) mmm [ oRA-GA (+) [ LoRA-GA (-)
820 CoLA %0 MRPC
81.5 88
g 81.0
g 861
% 80.5
5 84,
;d 80.0
79.5 821
79.0° 8 32 128 80" 8 32 128
Rank Rank

e (+): with preconditioners
e (-): no preconditioners .
1



Theory and proof...




Proof of sketch: Control the dynamics for alignment

~T ~

). ls  mG[A] 1 0 mX XA:B.|[A;
= T v ~T ~ .

Bia| |mG' I | |B:] N|pnBlATX X 0 B;

_—— m—}/
=21 =H =2

19



Proof of sketch: Control the dynamics for alignment

I G* X' X
At—l—l d T At 1 0 7]1X XAtBt At
= T —_— T ~ .
Bia| |mG' I | |B:] N|pnBlATX X 0 B;
_—— ~—}4—
=21 =H =2Z;

o Approximated linear dynamical system Zii“ = H'Z,

e Schur decomposition of H

e obtain the dynamics of Z}™ (decouple A;™ and B}™ and obtain the
alignment to G
e Define the residual term E, := Z, — Z;™, control ||E.|p in early stage

N ||G”||og)
t<T '“(nAonip
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Proof of sketch: Control the dynamics for alignment

I G* X' X
At—l—l d T At 1 0 'f]]_X XAtBt At
= T —_— T ~ .
Bia| |mG' I | |B:] N|pnBlATX X 0 B;
—_— ——
=21 =H =2Z;

o Approximated linear dynamical system Z%i“ = H'Z,

e Schur decomposition of H

e obtain the dynamics of Z}™ (decouple A;™ and B}™ and obtain the
alignment to G

e Define the residual term E, := Z, — Z;™, control ||E.|p in early stage

N HG“HOE)
t<T ln(||Ao||§p

oTransfer the alignment from A}™ to A, [4] (Stoger & Soltanolkotabi)
1U- L(G*)U - (A)llop S U7 L (PRYU - (PEAG + Ev)|lop is small, w.hp.

19



Global convergence on
nonlinear models




Recall problem setting and assumptions for nonlinear model

o Pre-trained model fore(x) = o[(x" W*)T] € R

o Unknown low-rank feature shift A: W= ws + A with Rank(A) = r*
o We assume r = r*. h N
o Downstream well-behaved data y = o[(x' W )'], {x;}", v N(0,14)
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Recall problem setting and assumptions for nonlinear model

o Pre-trained model fye(x) = o[(x" W)T] € R¥

o Unknown low-rank feature shift A: Wu ‘= W¥ 4+ A with Rank(A) = r*
o We assume r = r*. h N
o Downstream well-behaved data y = o[(x' W )'], {x;}", L N(0,14)

o training loss
~ 1 ~ ~ 12
] i _
L(A,B):= 2NH0<X(W +AB)) YHF.
o gradient updates
Val(A:,B:) = —Jw,Bl, Vgl(A:,B:)=—A]Jy,,

where we define

Jw, = %)?T [U(XW”) - %)?Ta()?wt)] o' (XW,).

S5
o GLM-tron style: [3, 6]
20



Global convergence

Theorem (Linear convergence rate)

Under (Spectral-initialization) and Ji" for gradient update (adding
preconditioners), choose constant step-size n < 1, we have

t
|AB: - Ally S (1 - g) Ae(A), w.hp

e holds for standard gradient update, but requires more assumptions.
« [ AoBo — Als < €| Allop, w-h.p.
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Global convergence

Theorem (Linear convergence rate)

Under (Spectral-initialization) and Ji" for gradient update (adding
preconditioners), choose constant step-size n < 1, we have

t
|AB: - Ally S (1 - g) Ae(A), w.hp

e holds for standard gradient update, but requires more assumptions.
« [ AoBo — Als < €| Allop, w-h.p.

A bit proof sketch at

o E; [_J?/Lvrﬂ = %(AtBt — A) by Stein's lemma = E[G"] = Ex [J?/vag] = %A
e concentration:
S - Ex U] S Vde|AB: — Allg, w.h.p.

F
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Global convergence

Theorem (Linear convergence rate)

Under (Spectral-initialization) and Ji" for gradient update (adding
preconditioners), choose constant step-size n < 1, we have

t
|AB: - Ally S (1 - g) Ae(A), w.hp

e holds for standard gradient update, but requires more assumptions.
« [ AoBo — Als < €| Allop, w-h.p.

A bit proof sketch at

o Ex[-JW'] = 3(A:B: — A) by Stein’s lemma = Ex[G"] = Ex[J}i] = 1A
e concentration:
S —Ex [ S Vde|AB; — Allg , w.h.p. = control G

F

e recover at initialization:

|AoBo — Allp < ||AgBo — vG*||r + concentration on G* + p\%., w.h.p o1



Proof of sketch on A;B; — A

[|Acs1Bei1 — Alls S I3 — cu(AeB: — A)||r [concentration+Hermite]

+(1-1)|[Ua Uh,(A:B: — 8)V5, Vi

(1 una ) a8~ v i)

22



Proof of sketch on A;B; — A

[|Acs1Bei1 — Alls S I3 — cu(AeB: — A)||r [concentration+Hermite]

+ (1= )| Ua U, (AB — 2)V5,V,
:

+ /(10— Ua UL, ) (AB— 2) (1 - Vi, V)

L— lUAt Odxr € RUHKx2r

Okxr VB,

then LL is a projection matrix, /4. s — LL" = LLLI
2

o transformed to lower bound HLEALH
F

< 1 by Wedin's sin-6 theorem

.
o upper bound HLJ_U o

22



Takeaway messages

o arXiv: 2502.01235 and code

Model Results Algorithm Initialization Conclusion

Theorem 3.1 GD (LoRA-init) Subspace alignment of B
Theorem 3.2 GD (LoRA-init) Subspace alignment of A;

Linear Proposition 3.3 GD (Spectral-init) |[AoBo — Al|F is small
Theorem 3.5 GD (Spectral-init) Linear convergence of | A;B; — A||rp
Theorem 3.6 Precondition GD (Spectral-init) Linear convergence rate independent of k(A)

” Theorem 4.3 Precondition GD (Spectral-init) Linear convergence rate independent of x(A)
b

Theorem C.15  Smoothed Precondition GD

(Spectral-init)

Better convergence performance with less assumptions

e subspace alignment between G* and (A, B:)
o efficiency improvement under spectral initialization

e preconditioners also help

23
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Takeaway messages

o arXiv: 2502.01235 and code

Model Results Algorithm Initialization Conclusion

Theorem 3.1 GD (LoRA-init) Subspace alignment of B
Theorem 3.2 GD (LoRA-init) Subspace alignment of A;

Linear Proposition 3.3 GD (Spectral-init) |[AoBo — Al|F is small
Theorem 3.5 GD (Spectral-init) Linear convergence of | A;B; — A||rp
Theorem 3.6 Precondition GD (Spectral-init) Linear convergence rate independent of k(A)

” Theorem 4.3 Precondition GD (Spectral-init) Linear convergence rate independent of x(A)
b

Theorem C.15  Smoothed Precondition GD  (Spectral-init) ~ Better convergence performance with less assumptions

e subspace alignment between G* and (A, B:)
o efficiency improvement under spectral initialization
e preconditioners also help

e How to handle nonlinearity at a theoretical level (e.g., training dynamics)

e How to precisely and efficiently approximate nonlinearity at a practical

level under theoretical guidelines 23
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