Fast learning in reproducing kernel Kreĭn spaces via signed measures
 Fanghui Liu ${ }^{1}$, Xiaolin Huang ${ }^{2,3}$, Yingyi Chen ${ }^{1}$, Johan A.K. Suykens ${ }^{1}$
 ${ }^{1}$ Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, Belgium ${ }^{2}$ Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China ${ }^{3}$ Institute of Medical Robotics, Shanghai Jiao Tong University, China

Topic: Indefinite kernels

extensively used in practice:

- intrinsic: hyperbolic tangent kernel, log kernel, truncated ℓ_{1} distance kernel
- extrinsic: positive definite kernels degenerate to indefinite ones, e.g.,

1) polynomial kernel (by ℓ_{2} normalization) on the unit sphere
2) Gaussian kernel with geodesic distance Open question: positive decomposition Can a given non-PD kernel be decomposed into the difference of two PD kernels?

Topic: Scalability

Scalibility due to its n-by-n indefinite kernel matrix by eigenvalue decomposition
kernel ridge regression (KRR)

- space complexity $\mathcal{O}\left(n^{2}\right)$
- time complexity $\mathcal{O}\left(n^{3}\right)$

Random features are infeasible: indefiniteness Current results are biased to omit the negative eigenvalue part
Key question in scalability
How to obtain unbiased estimator by random features for indefinite kernels?

Our Algorithm

Algorithm 1: Random features for various indefinite kernels via signed measures. Input: An indefinite kernel function

$$
\begin{aligned}
& k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=k(z) \text { with } \\
& z:=\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2} \text { and the number of } \\
& \text { random features } s .
\end{aligned}
$$

Output: Unbised random feature map $\Phi(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{4 s}$ such that $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \approx$

$$
\frac{1}{s} \sum_{i=1}^{s}\left\langle\varphi_{i}(\boldsymbol{x}), \varphi_{i}\left(\boldsymbol{x}^{\prime}\right)\right\rangle
$$

1 Obtain the measure $\mu(\cdot)$ of the kernel k via (generalized) Fourier transform
2 Given μ, let $\mu:=\mu_{+}-\mu_{-}$be the Jordan decomposition with two nonnegative measures $\mu_{ \pm}$and compute the total mass $\|\mu\|=\left\|\mu_{+}\right\|+\left\|\mu_{-}\right\|$
3 Sample $\left\{\boldsymbol{\omega}_{i}\right\}_{i=1}^{s} \sim \mu_{+} /\left\|\mu_{+}\right\|$and $\left\{\boldsymbol{\nu}_{i}\right\}_{i=1}^{s} \sim \mu_{-} /\left\|\mu_{-}\right\|$
4 Output the explicit feature mapping $\Phi(\boldsymbol{x})$ with $\varphi_{i}(\boldsymbol{x})$ given in Eq. (1).

Refs. \& Acknowledgement

[1] RFF: A. Rahimi and B. Recht. Random features for large-scale kernel machines, NeurIPS2007.
[2] SRF: J. Pennington et al. Spherical random features for polynomial kernels, NeurIPS2015. [3] J. Bognár. Indefinite inner product spaces. Springer, 1974.
[4] D. Oglic and T. Gärtner. Scalable learning in reproducing kernel kreĭn spaces, ICML2019.

Preliminaries: RKKS, random features, signed measures

Reproducing Kernel Kreĭn Spaces (RKKS): There exists two Hilbert spaces $\mathcal{H}_{ \pm}$such that i) $\forall f \in \mathcal{H}_{\mathcal{K}}$, it can be decomposed into $f=f_{+} \oplus f_{-}$, where $f_{+} \in \mathcal{H}_{+}$and $f_{-} \in \mathcal{H}_{-}$, respectively. ii) $\forall f, g \in \mathcal{H}_{\mathcal{K}},\langle f, g\rangle_{\mathcal{H}_{\mathcal{K}}}=\left\langle f_{+}, g_{+}\right\rangle_{\mathcal{H}_{+}}-\left\langle f_{-}, g_{-}\right\rangle_{\mathcal{H}_{-}}$

Positive decomposition: $k=k_{+}-k_{-}$for k asscoiated with RKKS and $k_{ \pm}$associated with $\mathcal{H}_{ \pm}$. Random features: A shift-invariant $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=k\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$ and positive definite kernel (by nomarlizing $k(\mathbf{0})=1$) admit the spectral distribution representation

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\int_{\mathbb{R}^{d}} p(\boldsymbol{\omega}) \exp \left(\mathrm{i} \boldsymbol{\omega}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right) \mathrm{d} \boldsymbol{\omega} \approx \frac{1}{s} \sum_{j=1}^{s} \exp \left(\mathrm{i} \boldsymbol{\omega}_{j}^{\top} \boldsymbol{x}\right) \exp \left(\mathrm{i} \boldsymbol{\omega}_{j}^{\top} \boldsymbol{x}^{\prime}\right)^{*} \text { with } \boldsymbol{\omega} \sim p(\boldsymbol{\omega})
$$

Signed Measures: Let $\mu: \mathcal{A} \rightarrow(-\infty+\infty)$ be a signed measure on a set Ω satisfying $\mu(\emptyset)=0$ and σ-additivity. It covers Borel measure, finite measure, probability measure, etc.

Our Model in Theory

Theorem 1. Denote the (generalized) Fourier transform of a stationary indefinite kernel k as the measure μ, then we have the following results:
(i) Existence: k admits the positive decomposition, i.e., $k=k_{+}-k_{-}$, if and only if the total mass of the measure μ is finite, i.e., $\|\mu\|<\infty$.
(ii) Representation: If $\|\mu\|<\infty$, the associated $R K H S s \mathcal{H}_{ \pm}$are given by

$$
\mathcal{H}_{ \pm}=\left\{f:\|f\|_{\mathcal{H}_{ \pm}}^{2}=\int_{\mathbb{R}^{d}} \frac{|F(\boldsymbol{\omega})|^{2}}{\mu_{ \pm}(\boldsymbol{\omega})} \mathrm{d} \boldsymbol{\omega}<\infty\right\}
$$

where $F(\boldsymbol{\omega})$ is the Fourier transform of f.
Remark: 1) much easier to be found than operator theory in harmonic analysis
2) computationally implementable in practice

Our Model in Application: randomized fratures map

Our algorithm admits

$$
k\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \approx \frac{1}{s} \sum_{i=1}^{s}\left\langle\operatorname{Re}\left[\varphi_{i}(\boldsymbol{x})\right], \operatorname{Re}\left[\varphi_{i}\left(\boldsymbol{x}^{\prime}\right)\right]\right\rangle-\frac{1}{s} \sum_{i=1}^{s}\left\langle\operatorname{Im}\left[\varphi_{i}(\boldsymbol{x})\right], \operatorname{Im}\left[\varphi_{i}\left(\boldsymbol{x}^{\prime}\right)\right]\right\rangle
$$

where $\varphi_{i}(\boldsymbol{x})$ is
$\varphi_{i}(\boldsymbol{x})=\left[\sqrt{c_{1}\left\|\mu_{+}\right\|} \cos \left(\boldsymbol{\omega}_{i}^{\top} \boldsymbol{x}\right), \sqrt{c_{1}\left\|\mu_{+}\right\|} \sin \left(\boldsymbol{\omega}_{i}^{\top} \boldsymbol{x}\right), \mathrm{i} \sqrt{c_{2}\left\|\mu_{-}\right\|} \cos \left(\boldsymbol{\nu}_{i}^{\top} \boldsymbol{x}\right), \mathrm{i} \sqrt{c_{2}\left\|\mu_{-}\right\|} \sin \left(\boldsymbol{\nu}_{i}^{\top} \boldsymbol{x}\right)\right]$. Hold for linear combination of PD kernels, polynomial kernels on the sphere.

Theorem 2. For any $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d}$, by ℓ_{2} normalization, the NTK kernel of a two layer ReLU network of the form $f(\boldsymbol{x} ; \boldsymbol{\theta})=\sqrt{2} s \sum_{j=1}^{s} \sum_{j=1}^{s} a_{j} \max \left\{\boldsymbol{\omega}_{j}^{\top} \boldsymbol{x}, 0\right\}$ is stationary

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\frac{2-z^{2}}{\pi} \arccos \left(\frac{1}{2} z^{2}-1\right)+\frac{z}{2 \pi} \sqrt{4-z^{2}}
$$

where $z:=\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2} \in[0,2]$. However, the function $k(z), z \in[0,2]$ is not positive definite.

Experimental Results

Kernel approximation on letter, ijcnn1, covtype, and cod-RNA
delta-Gaussian kernel: $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} / 2 a^{2}\right)-\exp \left(-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} / 2 b^{2}\right)$ with $a=1, b=10$

polynomial kernel by ℓ_{2} normalization: $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(1-\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2} / a^{2}\right)^{p}$ with $a=p=2$

