Fast learning in reproducing kernel Kreĭn spaces via signed measures

Fanghui Liu¹, Xiaolin Huang^{2,3}, Yingyi Chen¹, Johan A.K. Suykens¹
 ¹Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, Belgium
 ²Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China
 ³Institute of Medical Robotics, Shanghai Jiao Tong University, China

Topic: Indefinite kernels

extensively used in practice:

- *intrinsic*: hyperbolic tangent kernel, log kernel, truncated ℓ_1 distance kernel
- extrinsic: positive definite kernels degenerate to indefinite ones, e.g.,
 1) polynomial kernel (by l₂ normalization) on the unit sphere
- 2) Gaussian kernel with geodesic distance

Open question: positive decomposition

Preliminaries: RKKS, random features, signed measures

Reproducing Kernel Kreĭn Spaces (RKKS): There exists two Hilbert spaces \mathcal{H}_{\pm} such that i) $\forall f \in \mathcal{H}_{\mathcal{K}}$, it can be decomposed into $f = f_{+} \oplus f_{-}$, where $f_{+} \in \mathcal{H}_{+}$ and $f_{-} \in \mathcal{H}_{-}$, respectively. ii) $\forall f, g \in \mathcal{H}_{\mathcal{K}}, \langle f, g \rangle_{\mathcal{H}_{\mathcal{K}}} = \langle f_{+}, g_{+} \rangle_{\mathcal{H}_{+}} - \langle f_{-}, g_{-} \rangle_{\mathcal{H}_{-}}$. **Positive decomposition:** $k = k_{+} - k_{-}$ for k associated with RKKS and k_{\pm} associated with \mathcal{H}_{\pm} .

Random features: A shift-invariant $k(\boldsymbol{x}, \boldsymbol{x}') = k(\boldsymbol{x}-\boldsymbol{x}')$ and positive definite kernel (by nomarlizing $k(\boldsymbol{0}) = 1$) admit the spectral distribution representation

$$k(\boldsymbol{x}, \boldsymbol{x}') = \int_{\mathbb{R}^d} \boldsymbol{p}(\boldsymbol{\omega}) \exp\left(\mathrm{i}\boldsymbol{\omega}^\top(\boldsymbol{x} - \boldsymbol{x}')\right) \mathrm{d}\boldsymbol{\omega} \approx \frac{1}{s} \sum_{j=1}^s \exp(\mathrm{i}\boldsymbol{\omega}_j^\top \boldsymbol{x}) \exp(\mathrm{i}\boldsymbol{\omega}_j^\top \boldsymbol{x}')^* \text{ with } \boldsymbol{\omega} \sim p(\boldsymbol{\omega})$$

Signed Measures: Let $\mu : \mathcal{A} \to (-\infty + \infty)$ be a signed measure on a set Ω satisfying $\mu(\emptyset) = 0$ and

Can a given non-PD kernel be decomposed into the difference of two PD kernels?

Topic: Scalability

Scalibility due to its n-by-n indefinite kernel matrix by eigenvalue decomposition kernel ridge regression (KRR)

- space complexity $\mathcal{O}(n^2)$
- time complexity $\mathcal{O}(n^3)$

Random features are infeasible: indefiniteness Current results are biased to omit the negative eigenvalue part Key question in scalability How to obtain unbiased estimator by random features for indefinite kernels?

Our Algorithm

Algorithm 1: Random features for various indefinite kernels via signed measures. **Input**: An indefinite kernel function $k(\boldsymbol{x}, \boldsymbol{x}') = k(z)$ with $z := \|\boldsymbol{x} - \boldsymbol{x}'\|_2$ and the number of random features s. **Output**: Unbised random feature map $\Phi(\cdot): \mathbb{R}^d \to \mathbb{R}^{4s}$ such that $k(\boldsymbol{x}, \boldsymbol{x}') \approx$ $\frac{1}{s}\sum_{i=1}^{s} \langle \varphi_i(\boldsymbol{x}), \varphi_i(\boldsymbol{x}') \rangle.$ 1 Obtain the measure $\mu(\cdot)$ of the kernel k via (generalized) Fourier transform **2** Given μ , let $\mu := \mu_+ - \mu_-$ be the Jordan decomposition with two nonnegative measures μ_{\pm} and compute the total mass $\|\mu\| = \|\mu_+\| + \|\mu_-\|$ **3** Sample $\{\omega_i\}_{i=1}^s \sim \mu_+ / \|\mu_+\|$ and $\{\nu_i\}_{i=1}^s \sim \mu_- / \|\mu_-\|$ 4 Output the explicit feature mapping $\Phi(\boldsymbol{x})$ with $\varphi_i(\boldsymbol{x})$ given in Eq. (1). Refs. & Acknowledgement

 σ -additivity. It covers Borel measure, finite measure, probability measure, etc.

Our Model in Theory

Theorem 1. Denote the (generalized) Fourier transform of a stationary indefinite kernel k as the measure μ , then we have the following results:

(i) Existence: k admits the positive decomposition, i.e., $k = k_+ - k_-$, if and only if the total mass of the measure μ is finite, i.e., $\|\mu\| < \infty$.

(ii) **Representation**: If $\|\mu\| < \infty$, the associated RKHSs \mathcal{H}_{\pm} are given by

$$\mathcal{H}_{\pm} = \left\{ f : \|f\|_{\mathcal{H}_{\pm}}^2 = \int_{\mathbb{R}^d} \frac{|F(\boldsymbol{\omega})|^2}{\mu_{\pm}(\boldsymbol{\omega})} \mathrm{d}\boldsymbol{\omega} < \infty \right\} \,,$$

where $F(\boldsymbol{\omega})$ is the Fourier transform of f.

Remark: 1) much easier to be found than operator theory in harmonic analysis 2) computationally implementable in practice

Our Model in Application: randomized fratures map

Our algorithm admits

$$k(\boldsymbol{x} - \boldsymbol{x}') \approx \frac{1}{s} \sum_{i=1}^{s} \langle \operatorname{Re}[\varphi_i(\boldsymbol{x})], \operatorname{Re}[\varphi_i(\boldsymbol{x}')] \rangle - \frac{1}{s} \sum_{i=1}^{s} \langle \operatorname{Im}[\varphi_i(\boldsymbol{x})], \operatorname{Im}[\varphi_i(\boldsymbol{x}')] \rangle.$$

where $\varphi_i(\boldsymbol{x})$ is

 $\varphi_i(\boldsymbol{x}) = \left[\sqrt{c_1 \|\mu_+\|} \cos(\boldsymbol{\omega}_i^{\mathsf{T}} \boldsymbol{x}), \sqrt{c_1 \|\mu_+\|} \sin(\boldsymbol{\omega}_i^{\mathsf{T}} \boldsymbol{x}), i\sqrt{c_2 \|\mu_-\|} \cos(\boldsymbol{\nu}_i^{\mathsf{T}} \boldsymbol{x}), i\sqrt{c_2 \|\mu_-\|} \sin(\boldsymbol{\nu}_i^{\mathsf{T}} \boldsymbol{x})\right].$ (1)

Hold for linear combination of PD kernels, polynomial kernels on the sphere.

Theorem 2. For any $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$, by ℓ_2 normalization, the NTK kernel of a two layer ReLU network of the form $f(\mathbf{x}; \boldsymbol{\theta}) = \sqrt{2s} \sum_{j=1}^s \sum_{j=1}^s a_j \max\{\boldsymbol{\omega}_j^\top \mathbf{x}, 0\}$ is stationary

$$k(\mathbf{x}, \mathbf{x}') = \frac{2 - z^2}{\pi} \arccos\left(\frac{1}{2}z^2 - 1\right) + \frac{z}{2\pi}\sqrt{4 - z^2},$$

where $z := \|\boldsymbol{x} - \boldsymbol{x}'\|_2 \in [0, 2]$. However, the function $k(z), z \in [0, 2]$ is not positive definite.

Experimental Results

Kernel approximation on *letter*, *ijcnn1*, *covtype*, and *cod-RNA*

delta-Gaussian kernel: $k(\boldsymbol{x}, \boldsymbol{x}') = \exp(-\|\boldsymbol{x} - \boldsymbol{x}'\|^2 / 2a^2) - \exp(-\|\boldsymbol{x} - \boldsymbol{x}'\|^2 / 2b^2)$ with a = 1, b = 10

[1] RFF: A. Rahimi and B. Recht. Random features for large-scale kernel machines, NeurIPS2007.

[2] **SRF:** J. Pennington et al. Spherical random features for polynomial kernels, NeurIPS2015.

[3] J. Bognár. Indefinite inner product spaces.
Springer, 1974.
[4] D. Oglic and T. Gärtner. Scalable learning in reproducing kernel kreĭn spaces, ICML2019.

erc

polynomial kernel by ℓ_2 normalization: $k(\boldsymbol{x}, \boldsymbol{x}') = (1 - \|\boldsymbol{x} - \boldsymbol{x}'\|_2^2 / a^2)^p$ with a = p = 2

