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Topic: Indefin Preliminaries: RKKS, rando

extensively used in practice: Reproducing Kernel Krein Spaces (RKKS): There exists two Hilbert spaces H4 such that
S ' Fernel | i) Vf € Hy, it can be decomposed into f = f. @ f_, where f, € H, and f_ € H_, respectively.
® wnirinsic: hyperbolic tangent kernel, log 11) Vf,g € Hg, <f7 g>7'llc — <f-|-7g-|->7'l+ - <f—7 g->7—l_ '

kernel, truncated £, distance kernel Positive decomposition: £ =k, — k_ for k asscoiated with RKKS and k4 associated with H .

Random features: A shift-invariant k(x,x’) = k(x—ax") and positive definite kernel (by nomarlizing

o cxirinsic: positive definite kernels degen- . rAtiGiL T
k(0) = 1) admit the spectral distribution representation

erate to indefinite ones, e.g..

1) polynomial kernel (by £ normalization) s

on the unit sphere k(x,z") :/ p(w) exp (in(a: — m’))dw ~ — Z exp(iw; ) exp(iw; )" with w ~ p(w)

2) Gaussian kernel with geodesic distance Rd A
Open question: positive decomposition
Can a given non-PD kernel be decomposed into Signed Measures: Let u: A — (—oo 4 00) be a signed measure on a set 2 satisfying () = 0 and
the diference of two PD kernels? o-additivity. It covers Borel measure, finite measure, probability measure, etc.

Topic: Scalabi Our Model in Theory

Scalibility due to its n-by-n indefinite kernel ma- Theorem 1. Denote the (generalized) Fourier transform of a stationary indefinite kernel k as the
trix by eigenvalue decomposition measure (1, then we have the following results:

kernel ridge regression (KRR) (i) Existence: k admits the positive decomposition, i.e., k = ki — k_, if and only if the total mass
of the measure i is finite, i.e., ||u|| < oco.

: 2
e space complexity O(n®) (i1) Representation: If ||u|| < oo, the associated RKHSs Hy are given by

e time complexity O(n’)

r 2 \
12 F(w)]

Random features are infeasible: indefiniteness He=<qf:|f H’Hi — / e (W) dw < 0 ¢,

Current results are biased to omit the negative ) & ’

eigenvalue part where F(w) s the Fourier transform of f.

Key question in scalability

How to obtain unbiased estimator by random Remark: 1) much easier to be found than operator theory in harmonic analysis

features for indefinite kernels? 2) computationally implementable in practice

Our Algorithn Our Model in Application: re

Algorithm 1: Random features for vari- Our algorithm admits

ous indefinite kernels via signed measures. 1S 1S
Input: An indefinite kernel function k(x —x') ~ P Z(Re[gpi(m)], Re[pi(x')]) — P Z<Im[w(w)], Im[p;(x')]) .
k(x,x") = k(z) with 1=1 i=1
z := |l — x’||> and the number of .
where @;(x) is
random features s.
Output: Unbised random feature map B T R T\ . . T
B0 RY o RE such that pi(@) =|Verllpy [ cos(w] ), v/er [l [ sin(w] @), iv/ea[u—cos(v] @), iv/callu[[sin(v] )| . (1)
AP
/f(a?,saz )~ , Hold for linear combination of PD kernels, polynomial kernels on the sphere.
| s i—1 (pi(@), pi(x)).
Obtain the measure p(-) of the kernel k Theorem 2. For any =, x’ € R?, by ¥5 normalization, the NTK kernel of a two layer ReLU network
Vi? (generalized) Fourier transform of the form f(x;0) = v/2s Z;Zl 2;21 a, max{w]T-m, 0} is stationary
Given pu, let u:= puy — p_ be the Jordan
decomposition with two nonnegative , ) _ 2 1, -z >
measures p+ and compute the total mass k(z,x") = — arccos | 5z% — 1) 4 9 \/4 —

|l = N | 4[] |
Sample {w;}i_; ~ puy/||pr]| and where z := ||lx — x'||2 € |0,2]. However, the function k(z),z € |0, 2] is not positive definite.
Witizy ~ b /llp-|

Output the explicit feature mapping ®(x)
with ¢;(a) given in Eq. (1).

Experimental Results

Kernel approximation on letter, 1jecnnl, covtype, and cod-RNA

Refs. & Acknc delta-Gaussian kernel: k(x,x’) = exp(—||z — =’||?/2a°) — exp(—||x — x'||*/2b%) with a = 1, b = 10
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polynomial kernel by ¢ normalization: k(z,z') = (1 — ||z — @’||3/a?)” with a = p =2
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NEW: ERC Advanced Grant E-DUALITY 0‘

Exploring duality for future data-driven modelling




