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Topic: Indefinite kernels
extensively used in practice:

• intrinsic: hyperbolic tangent kernel, log
kernel, truncated `1 distance kernel

• extrinsic: positive definite kernels degen-
erate to indefinite ones, e.g.,
1) polynomial kernel (by `2 normalization)
on the unit sphere
2) Gaussian kernel with geodesic distance

Open question: positive decomposition
Can a given non-PD kernel be decomposed into
the difference of two PD kernels?

Topic: Scalability
Scalibility due to its n-by-n indefinite kernel ma-
trix by eigenvalue decomposition
kernel ridge regression (KRR)

• space complexity O(n2)

• time complexity O(n3)

Random features are infeasible: indefiniteness
Current results are biased to omit the negative
eigenvalue part
Key question in scalability
How to obtain unbiased estimator by random
features for indefinite kernels?

Our Algorithm

Algorithm 1: Random features for vari-
ous indefinite kernels via signed measures.

Input: An indefinite kernel function
k(x,x′) = k(z) with
z := ‖x− x′‖2 and the number of
random features s.

Output: Unbised random feature map
Φ(·) : Rd → R4s such that
k(x,x′)≈
1
s

∑s
i=1 〈ϕi(x), ϕi(x

′)〉.
Obtain the measure µ(·) of the kernel k1

via (generalized) Fourier transform
Given µ, let µ := µ+ − µ− be the Jordan2

decomposition with two nonnegative
measures µ± and compute the total mass
‖µ‖ = ‖µ+‖+ ‖µ−‖
Sample {ωi}si=1 ∼ µ+/‖µ+‖ and3

{νi}si=1 ∼ µ−/‖µ−‖
Output the explicit feature mapping Φ(x)4

with ϕi(x) given in Eq. (1).
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Preliminaries: RKKS, random features, signed measures
Reproducing Kernel Krĕın Spaces (RKKS): There exists two Hilbert spaces H± such that
i) ∀f ∈ HK, it can be decomposed into f = f+ ⊕ f−, where f+ ∈ H+ and f− ∈ H−, respectively.
ii) ∀f, g ∈ HK, 〈f, g〉HK = 〈f+, g+〉H+ − 〈f−, g−〉H− .
Positive decomposition: k = k+ − k− for k asscoiated with RKKS and k± associated with H±.
Random features: A shift-invariant k(x,x′) = k(x−x′) and positive definite kernel (by nomarlizing
k(0) = 1) admit the spectral distribution representation

k(x,x′)=

∫
Rd

p(ω) exp
(

iω>(x− x′)
)

dω ≈ 1

s

s∑
j=1

exp(iω>j x) exp(iω>j x
′)∗ with ω ∼ p(ω)

Signed Measures: Let µ : A → (−∞+∞) be a signed measure on a set Ω satisfying µ(∅) = 0 and
σ-additivity. It covers Borel measure, finite measure, probability measure, etc.

Our Model in Theory
Theorem 1. Denote the (generalized) Fourier transform of a stationary indefinite kernel k as the
measure µ, then we have the following results:
(i) Existence: k admits the positive decomposition, i.e., k = k+ − k−, if and only if the total mass
of the measure µ is finite, i.e., ‖µ‖ <∞.
(ii) Representation: If ‖µ‖ <∞, the associated RKHSs H± are given by

H± =

{
f : ‖f‖2H± =

∫
Rd

|F (ω)|2

µ±(ω)
dω <∞

}
,

where F (ω) is the Fourier transform of f .

Remark: 1) much easier to be found than operator theory in harmonic analysis
2) computationally implementable in practice

Our Model in Application: randomized fratures map
Our algorithm admits

k(x− x′) ≈ 1

s

s∑
i=1

〈Re[ϕi(x)],Re[ϕi(x
′)]〉 − 1

s

s∑
i=1

〈Im[ϕi(x)], Im[ϕi(x
′)]〉 .

where ϕi(x) is

ϕi(x)=
[√

c1‖µ+‖ cos(ω>i x),
√
c1‖µ+‖ sin(ω>i x), i

√
c2‖µ−‖cos(ν>i x), i

√
c2‖µ−‖ sin(ν>i x)

]
. (1)

Hold for linear combination of PD kernels, polynomial kernels on the sphere.

Theorem 2. For any x,x′ ∈ Rd, by `2 normalization, the NTK kernel of a two layer ReLU network
of the form f(x;θ) =

√
2s
∑s

j=1

∑s
j=1 aj max{ω>j x, 0} is stationary

k(x,x′) =
2− z2

π
arccos

(
1

2
z2 − 1

)
+

z

2π

√
4− z2 ,

where z := ‖x− x′‖2 ∈ [0, 2]. However, the function k(z), z ∈ [0, 2] is not positive definite.

Experimental Results
Kernel approximation on letter, ijcnn1, covtype, and cod-RNA

delta-Gaussian kernel: k(x,x′) = exp(−‖x− x′‖2/2a2)− exp(−‖x− x′‖2/2b2) with a = 1, b = 10

polynomial kernel by `2 normalization: k(x,x′) =
(
1− ‖x− x′‖22/a2

)p
with a = p = 2


