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Research overview

Research Overview

Understanding large dimensional machine learning

@ high dimensions: large n and d

@ abnormal phenomena: training error

Zero-one loss
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can be zero but still generalize well
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(b) A fully connected neural network

Figure: Experiments on MNIST from [Belkin et al. PNAS2019.]
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Research Overview

Understanding large dimensional machine learning

@ double descent

@ exist in over-parameterized models, e.g., neural networks, random
features

under-fitting .
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Figure: A cartoon by [Belkin et al. PNAS2019.]
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Research overview

Research Overview

Understanding large dimensional machine learning

@ Kernel methods? different from random features:

formulation: primal vs. dual

RFF: k(z, ') ~ ' (x)p(x),

where ¢(x) : R? — R* is an explicit feature mapping in R® space.

eigenvalue gap

Z = p(X) € R, for large d and take s — oo

|K-Z"Z||p —0

|K ~ 2" 2]y »0
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Research Overview

Interpolation learning generalizes well*

Kernel “ridegeless” regression

fzr=argmin || fll3, st f(x:) =yi -
fer —
Ex(f)=0

(Informal) Definition of Implicit regularization

The property that an algorithm (solving the un-regularized problem) always
pick up solutions with small excess risk.

o

Implicit regularization
@ optimization: SGD, early stopping

@ intrinsic structure: the curvature of kernel functions

!l jang and Rakhlin. Just interpolate: Kernel “ridgeless” regression can generalize.
Annals of Statistics, 2020.
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Research Overview

Explicit regularization vs. Implicit regularization

Kernel ridge regression (KRR)

Given a training set {x;,y;}!"_; and a kernel function k£ in RKHS 7, KRR
aims to solve the following empirical risk minimization (ERM)

f2 = argmin {1 S (F(@a)—9:) + M, f>H} . (1)
S )

o closed-from solution: f, \(z) = k(z, X)" (K +n\I)"ly.
@ explicit regularization: A := én~ with some ¥ >0 and 0 <& < 1.

@ In KRR, the expected excess risk

Ey‘m[g(fz,A) —-E&(fo)l = Ey|w|]fz7)\ — pr%%X := Bias + Variance
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Research Overview
Our findings

@ in high-dimensions, eigenvalue decay equivalence: K and X X' /d

@ bias: independent of d, converges at a O(\) rate

@ variance: depends on n,d, can be unimodal or monotonic decreasing

@ regularization: affects the position and value of the peak point

|——excess risk
variance
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error
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Main results

(Basic) Assumptions

e existence of f,: f, € H

e noise condition: Jo such that E[(f,(z) — y)* | 2] < o2
uniformly bounded noise, sub-Gaussian noise
o kernel functions:
1) inner-product kernels: k(x;, ;) = h ((z;, x;)/d)
2) radial kernels: k(x;, @;) = h (||z; — x;[|3/d)
Here h(-) : R — R is a nonlinear function that is assumed to be
(locally) smooth.
@ (8+m)-moments in high-dimensional statistics:
Let x; = X Y2, satlsfylng i.i.d entries with E[¢;(7)] = 0, V[t;(j)] = 1,

and E(|t;(7)]) < Cdsin such that E[z;z]] = 3y with | Zg]|2 < o0
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Main results

Linearization of K in high dimensions

In high dimensions?, || K — I/(:h/nHz —+0asn,d— oo

— b o d
Kl = 011" + =+ 1 +T,  (2)
d ~—~
% implicit regularization
parameters inner-product kernels radial kernels
tr(=2 tr(=2
a 1(0) + " (0) gf;‘) h(27) + 21" (27) (;d)
8 R (0) —an'(27)
~ h(1) — h(0) — TR'(0) h(0) 4+ 27h'(27) — h(27T)
T Onxn h/(zT)A + %h”(zT)A OA!

YA :=1¢" 417, where 9 € R” with o; := ||a;||3/d — 7
and 7 :=tr(Xq4)/d.

2Karoui. The spectrum of kernel random matrices. Annals of Statistics, 2010.
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Basic Results

Theorem

Under the above assumptions, for d large enough, \ := én~" with

0 <9 < 1/2, for any given € > 0, it holds with probability at least
1 — 26 — d~2 with respect to the draw of X that

2
Ey|waz,)\_pri:2 S )\log4<7> + Vi + residual term ,  (3)
px 0

N . bounds for variance
bounds for bias

2 o
where Vq := %N%\Jr’ with

n

Ai(X)
= 72
im1 [b+Ai(X)]

V|
™ = = =yt
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Main results

Refined results

Refined results with two additional assumptions in approximation theory
@ source condition: f, = L}.g,, with some 0 <r <1andg,¢€ sz
e capacity condition®: N'(A) := tr ((Lx + M) "'Lk) < Q*X7" with
n € [0,1]. (corresponds to RKHS and eigenvalue decay)
The bias B can be improved as (r = 1/2 and = 1)

BSO(\) — BSO(MW™).

Note that 1 is nearly independent of the learning rates.

3Strictly speaking, this would depend on d.
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Main results

Discussion on error bounds
Eigenvalue decay of K or X X' /d or X

n i X . o — X
/\/';’( =>", m with b :=nA +~, and r, := rank(X)
Ai(X) NE
1< 7y ‘i>r>k n<d ‘n>d
harmonic decay n/i O()
1
polynomial decay | ni~2® with a > 1/2 0 O3 (%)) 0!
exponential decay | ne~% with a > 0 Bound?

P limp o N =0

2 NG <o

1 1
btne—a(r«+1) ~ bfne—a )
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Main results

Discussion on error bounds

harmonic decay

Harmonic decay: Vi < O(;%) b:=n\+~and r, = rank(X X")

b%d
OAZO,V1§O(%)

o\ 7é 0 Vl O(m), define Nge = argminn d(énl_ni'g#»’y)Q

19> 22 3 =
2.9 < 55
1)d <ng2)r, <n, <d3)n.<rx<d4)n, issmall enough
—
L
=, o N
ONEN
r d
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Numerical results

Eigenvalue decay equivalence

-—-© Gaussian kernel
— x*X"/d

eigenvalue

index index

(d) poly kernel (e) Gaussian kernel

Figure: Top 60 eigenvalues on the subset of the YearPredictionMSD dataset.
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Numerical results

Risk curve on synthetic dataset with d = 500 and set v = 0 (implicit regularization)

we assume y; = fy(x;) + € with f,(z) = sin(||z||3) and Gaussian noise

e ~N(0,1). The samples are generated from x; = ECI/Qti by

(i) take X, as a diagonal matrix: (3;); o n/i in harmonic decay

(ii) take T as a random orthogonal matrix such that X X' = T X,T also
has a harmonic eigendecay with T' having almost i.i.d entries.

—F-expected excess error
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Figure: MSE of variance and bias O(n=2Y") with » = 1.
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Numerical results

Risk curve on real-world datasets

We take A = 0 and study implicit regularization ~
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(a) YearPredictionMSD (b) MNIST (digits 3 vs. 7)

Figure: The test performance of the kernel interpolation estimator and its
linearization one.
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Conclusion

Conclusion

@ the eigenvalue decay equivalence between the kernel matrix and the
data matrix in high-dimensions

@ the monotonic bias and unimodal variance
@ explicit and implicit regularization of kernel regression in
high-dimensions
Future work
@ extend (8 + m)-moment assumption to distribution-free analysis

o the scale width, affect eigenvalue, N'()\)
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Thanks for your attention!

Q&A
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