On the Double Descent of Random Features Models Trained with SGD

Fanghui Liu (EPFL), Johan A.K. Suykens (KU Leuven), Volkan Cevher (EPFL)

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

25th Nov. 2021

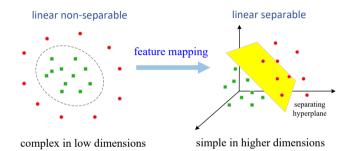
Outline

Research overview

Random features in double descent

Conclusion

Research Overview: Kernel approximation



Scalability of kernel methods: *n*-by-*n* kernel matrix. Solution: approximate the kernel by a low-rank representation

- Nyström approximation: approximate the kernel matrix
- Random Fourier features¹: approximate the kernel function

¹Rahimi A, Recht B. Random features for large-scale kernel machines, NeurIPS2007. (the test-of-time award in NeurIPS2017)

Research Overview: Random Fourier features

$$k(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}} \approx \varphi^{\top}(\mathbf{x}) \varphi(\mathbf{x}'),$$

where $\varphi(\mathbf{x}): \mathbb{R}^d \rightarrow \mathbb{R}^s$ is an $\mathbf{explicit}$ feature mapping

Bochner's theorem [1]

For a shift-invariant $k(\mathbf{x},\mathbf{x}')=k(\mathbf{x}-\mathbf{x}')$ and positive definite kernel,

$$\begin{split} k(\mathbf{x}, \mathbf{x}') &= \int_{\mathbb{R}^d} p(\boldsymbol{\omega}) \exp\left(\mathrm{i}\boldsymbol{\omega}^\top (\mathbf{x} - \mathbf{x}')\right) \mathrm{d}\boldsymbol{\omega} \\ &\approx \frac{1}{s} \sum_{j=1}^s \exp(\mathrm{i}\boldsymbol{\omega}_j^\top \mathbf{x}) \exp(\mathrm{i}\boldsymbol{\omega}_j^\top \mathbf{x}')^* = \varphi(\mathbf{x})^\top \varphi(\mathbf{x}') \end{split}$$

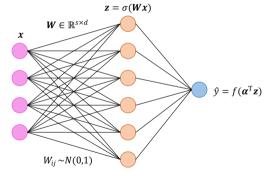
the explicit feature mapping:

$$\varphi(\mathbf{x}) := \frac{1}{\sqrt{s}} \left[\exp(-i\omega_1^\top \mathbf{x}), \cdots, \exp(-i\omega_s^\top \mathbf{x}) \right]^\top$$

Research Overview: Neural network view

RF model: a two-layer, (infinite)-width, fully-connected neural network

$$k\left(\mathbf{x},\mathbf{x}'\right) = \mathbb{E}_{\boldsymbol{\omega}\sim\mathcal{N}(\mathbf{0},\mathbf{I}_d)}[\sigma(\boldsymbol{\omega}^{\top}\mathbf{x})\sigma(\boldsymbol{\omega}^{\top}\mathbf{x}')]$$



- Gaussian kernel: $\sigma(x) = [\cos(x), \sin(x)]^{\top}$
- the 1st-order arc-cosine kernel: $\sigma(x) = \max\{0, x\}$
- soft-max in attention: $\sigma(x) = \exp(x)$

Research Overview: Applied to Linearized Attention in Transformers

self attention

$$\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V}) = \underbrace{\operatorname{softmax}(\mathbf{Q}\mathbf{K}^{\top})}_{:=\mathbf{A}} \mathbf{V} \approx \mathbf{Q}' \mathbf{K}'^{\top} \mathbf{V},$$

where $\mathbf{A}_{ij} = k(\mathbf{q}_i, \mathbf{k}_j) = \mathbb{E}[\sigma(\mathbf{q}_i)^{\top} \sigma(\mathbf{k}_j)]$

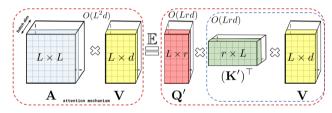


Figure: Approximation of self-attention. source: [2].

▶ soft-max in attention:
$$\exp(\mathbf{x}^{\top}\mathbf{x}') = \mathbb{E}_{\omega \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)} \left[\exp\left(\omega^{\top}\mathbf{x} - \frac{\|\mathbf{x}\|_2^2}{2}\right) \exp\left(\omega^{\top}\mathbf{x}' - \frac{\|\mathbf{x}'\|_2^2}{2}\right) \right]$$

Research Overview: Taxonomy

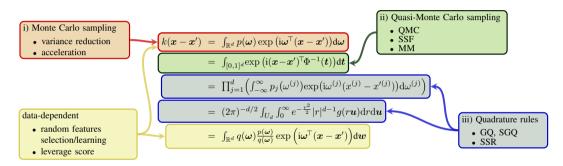


Figure: Taxonomy of random features based algorithms².

lions@epfl RFF with double descent | Fanghui Liu, fanghui.liu@epfl.ch

²Fanghui Liu, Xiaolin Huang, Yudong Chen, and Johan A.K. Suykens. *Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond.* TPAMI2021.

Outline

Research overview

Random features in double descent

Conclusion

Background: Double descent

over-parameterized models, e.g., neural networks, random features

- \blacktriangleright high dimensions: large n and d
- ▶ abnormal phenomena: training error can be zero but still generalize well

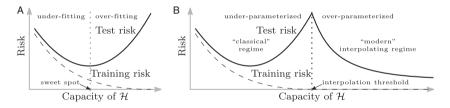


Figure: Bias-variance trade-off [3] (Belkin et al. PNAS2019).

Research Overview: Motivation

- interplay between optimization and excess risk: trained by SGD
- bias-variance decomposition for understanding multiple randomness sources

	data assumption	solution	result
(Hastie et al., 2019)	Gaussian	closed-form	variance 🎮 🦙
(Ba et al., 2020)	Gaussian	GD	variance 🗡 🦕
(Mei & Montanari, 2019)	i.i.d on sphere	closed-form	variance, bias 🗡 📐
(d'Ascoli et al., 2020a)	Gaussian	closed-form	refined ²
(Gerace et al., 2020)	Gaussian	closed-form	\nearrow
(Adlam & Pennington, 2020)	Gaussian	closed-form	refined
(Dhifallah & Lu, 2020)	Gaussian	closed-form	\nearrow
(Hu & Lu, 2020)	Gaussian	closed-form	\nearrow
(Liao et al., 2020)	general	closed-form	\nearrow
(Lin & Dobriban, 2021)	isotropic features with finite moments	closed form	refined
(Li et al., 2021)	correlated features with polynomial decay on Σ_d	closed form	interpolation learning
Ours	(at least) sub-exponential data	SGD	variance 🗡 🦙, bias 📐

¹ A refined decomposition on variance is conducted by sources of randomness on data sampling, initialization, label noise to possess each term (d'Ascoli et al., 2020b) or their full decomposition in (Adlam & Pennington, 2020; Lin & Dobriban, 2021).

Problem settings: Random features regression model

data: $y = f_{\rho}(\mathbf{x}) + \varepsilon$

- ► training data: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim \rho$ Assumption: sub-exponential data and $\|\mathbf{x}\|_2^2 \sim \mathcal{O}(d)$
- target function: $f_{\rho}(\mathbf{x}) = \int_{Y} y \, \mathrm{d}\rho(y \mid \mathbf{x})$
- \blacktriangleright noise: $\mathbb{E}(\varepsilon)=0$ and $\mathbb{E}(\varepsilon^2)=\tau^2$

function space

define the random features mapping $\varphi(\mathbf{x}) := \frac{1}{\sqrt{m}} \sigma(\mathbf{W}\mathbf{x}/\sqrt{d})$,

$$\mathcal{H} := \left\{ f \in L^2_{\rho_X} \, \middle| \ f(\mathbf{x}) = \langle \theta, \varphi(\mathbf{x}) \rangle \right\} \,, \quad \mathbf{W}_{ij} \sim \mathcal{N}(0, 1)$$

covariance operator: $\Sigma_m := \int_X [\varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})] d\rho_X(\mathbf{x})$ expected covariance operator: $\widetilde{\Sigma}_m := \mathbb{E}_{\mathbf{x}, \mathbf{W}}[\varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})]$

Problem settings: averaged SGD under adaptive step-size setting

$$\theta_t = \theta_{t-1} + \gamma_t [y_t - \langle \theta_{t-1}, \varphi(\mathbf{x}_t) \rangle] \varphi(\mathbf{x}_t), \qquad t = 1, 2, \dots n,$$

• averaged output:
$$\bar{\theta}_n := \frac{1}{n} \sum_{t=0}^{n-1} \theta_t \Longrightarrow \bar{f}_n = \langle \varphi(\cdot), \bar{\theta}_n \rangle$$

- adaptive step-size: $\gamma_t := \gamma_0 t^{-\zeta}, \zeta \in [0, 1)$
- optimal solution: $f^* = \arg \min_{f \in \mathcal{H}} \|f f_{\rho}\|_{L^2_{\rho_X}}^2$

► averaged excess risk:
$$\mathbb{E} \|\bar{f}_n - f^*\|_{L^2_{\rho_X}}^2 = \mathbb{E}_{\mathbf{X}, \mathbf{W}, \varepsilon} \langle \bar{f}_n - f^*, \Sigma_m(\bar{f}_n - f^*) \rangle$$

Assumptions

- ▶ boundedness of f^* : $||f^*||_{\mathcal{H}} < \infty$
- ▶ high dimension: $c \leq \{d/n, m/n\} \leq C$, $\|\mathbf{x}\|_2^2 \sim \mathcal{O}(d)$, $\Sigma_d := \mathbb{E}_{\mathbf{x}}[\mathbf{x} \otimes \mathbf{x}]$ with $\|\Sigma_d\|_2 < \infty$
- activation function: $\sigma(\cdot)$: Lipschitz continuous
- ▶ noise condition: $\Xi := \mathbb{E}_{\mathbf{x}}[\varepsilon^2 \varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})] \leq \tau^2 \Sigma_m$. uniformly bounded noise, sub-Gaussian noise

fourth moment condition:

for any PSD operator A, we have $\mathbb{E}_{\mathbf{W}}[\Sigma_m A \Sigma_m] \leq r' \mathbb{E}_{\mathbf{W}}[\operatorname{Tr}(\Sigma_m A) \Sigma_m] \leq r \operatorname{Tr}(\widetilde{\Sigma}_m A) \widetilde{\Sigma}_m$.

- 1) The special case A := I can be proved.
- 2) holds for sub-Gaussian/exponential data.

Properties of covariance operators

$$\begin{split} & \sigma(\cdot): \mathbb{R} \mapsto \mathbb{R} \text{ Lipschitz continuous} \\ & \text{covariance operator } \Sigma_m := \mathbb{E}_{\mathbf{x}}[\varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})] \\ & \text{expected covariance operator } \widetilde{\Sigma}_m := \mathbb{E}_{\mathbf{x},\mathbf{W}}[\varphi(\mathbf{x}) \otimes \varphi(\mathbf{x})] \end{split}$$

eigenvalue of $\widetilde{\Sigma}_m$

the same diagonal/non-diagonal elements: $\mathcal{O}(1/m)$ two distinct eigenvalues: $\widetilde{\lambda}_1 \sim \mathcal{O}(1)$, $\widetilde{\lambda}_2 \sim \mathcal{O}(1/m)$

sub-exponential random variables

 $\|\Sigma_m\|_2$, $\|\Sigma_m - \widetilde{\Sigma}_m\|_2$, $\operatorname{Tr}(\Sigma_m)$, and $\|\widetilde{\Sigma}_m^{-1}\mathbb{E}_{\mathbf{W}}(\Sigma_m^2)\|_2$ with $\mathcal{O}(1)$ sub-exponential norm order

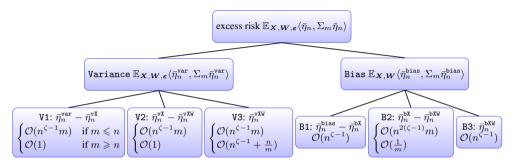
Bias-variance decomposition

Define $\eta_t := f_t - f^*$, we have

$$\begin{split} \eta_t &= [I - \gamma_t \varphi(\mathbf{x}_t) \otimes \varphi(\mathbf{x}_t)] (f_{t-1} - f^*) + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \\ \eta_t^{\text{bias}} &= [I - \gamma_t \varphi(\mathbf{x}_t) \otimes \varphi(\mathbf{x}_t)] \eta_{t-1}^{\text{bias}} , \quad \eta_0^{\text{bias}} = f^* \,, \\ \eta_t^{\text{var}} &= [I - \gamma_t \varphi(\mathbf{x}_t) \otimes \varphi(\mathbf{x}_t)] \eta_{t-1}^{\text{var}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) , \quad \eta_0^{\text{var}} = 0 \,. \end{split}$$

 $\begin{array}{l} \text{Bias-variance decomposition} \\ \mathbb{E}\|\bar{f}_n - f^*\|_{L^2_{\rho_X}}^2 = \underbrace{\mathbb{E}_{\mathbf{X},\mathbf{W}}\langle\bar{\eta}_n^{\text{bias}}, \Sigma_m\bar{\eta}_n^{\text{bias}}\rangle}_{:=\text{Bias}} + \underbrace{\mathbb{E}_{\mathbf{X},\mathbf{W},\varepsilon}\langle\bar{\eta}_n^{\text{var}}, \Sigma_m\bar{\eta}_n^{\text{var}}\rangle}_{:=\text{Variance}}. \end{array}$

Proof framework

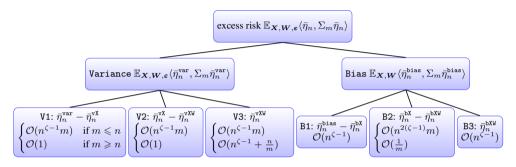


$$\texttt{Bias}: \quad \eta_t^{\texttt{bias}} = [I - \gamma_t \varphi(\mathbf{x}_t) \otimes \varphi(\mathbf{x}_t)] \eta_{t-1}^{\texttt{bias}}$$

Define "semi-stochastic" version: $\eta_t^{\mathrm{bX}} = (I - \gamma_t \Sigma_m) \eta_{t-1}^{\mathrm{bX}}, \quad \eta_t^{\mathrm{bXW}} = (I - \gamma_t \widetilde{\Sigma}_m) \eta_{t-1}^{\mathrm{bXW}},$

$$\begin{split} \mathbf{B1} &:= \mathbb{E}_{\mathbf{X},\mathbf{W}} \left[\langle \bar{\eta}_n^{\mathrm{bias}} - \bar{\eta}_n^{\mathrm{bX}}, \Sigma_m(\bar{\eta}_n^{\mathrm{bias}} - \bar{\eta}_n^{\mathrm{bX}}) \rangle \right] \\ \mathbf{B2} &:= \mathbb{E}_{\mathbf{W}} \left[\langle \bar{\eta}_n^{\mathrm{bX}} - \bar{\eta}_n^{\mathrm{bXW}}, \Sigma_m(\bar{\eta}_n^{\mathrm{bX}} - \bar{\eta}_n^{\mathrm{bXW}}) \rangle \right] \\ \mathbf{B3} &:= \langle \bar{\eta}_n^{\mathrm{bXW}}, \widetilde{\Sigma}_m \bar{\eta}_n^{\mathrm{bXW}} \rangle \end{split}$$

Proof framework



 $\texttt{Variance}: \quad \eta_t^{\texttt{var}} = [I - \gamma_t \varphi(\mathbf{x}_t) \otimes \varphi(\mathbf{x}_t)] \eta_{t-1}^{\texttt{var}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t)$

 $\text{Define "semi-stochastic" version: } \eta_t^{\mathtt{vX}} := (I - \gamma_t \Sigma_{m}) \eta_{t-1}^{\mathtt{vX}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_{t-1}^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} := (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} = (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + \gamma_t \varepsilon_t \varphi(\mathbf{x}_t) \,, \quad \eta_t^{\mathtt{vXW}} = (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}} + (I - \gamma_t \widetilde{\Sigma}_{m}) \eta_t^{\mathtt{vXW}}$

► V1 :=
$$\mathbb{E}_{\mathbf{X},\mathbf{W},\varepsilon} \left[\langle \bar{\eta}_n^{\mathsf{var}} - \bar{\eta}_n^{\mathsf{vX}}, \Sigma_m(\bar{\eta}_n^{\mathsf{var}} - \bar{\eta}_n^{\mathsf{vX}}) \rangle \right]$$

► V2 := $\mathbb{E}_{\mathbf{X},\mathbf{W},\varepsilon} \left[\langle \bar{\eta}_n^{\mathsf{vX}} - \bar{\eta}_n^{\mathsf{vXW}}, \Sigma_m(\bar{\eta}_n^{\mathsf{vX}} - \bar{\eta}_n^{\mathsf{vXW}}) \rangle \right]$

 $\blacktriangleright V3 := \mathbb{E}_{\mathbf{X}, \mathbf{W}, \varepsilon} \langle \bar{\eta}_n^{\mathsf{vXW}}, \Sigma_m \bar{\eta}_n^{\mathsf{vXW}} \rangle$

Results: error bounds

Theorem

Under the above-mentioned assumptions, if the step-size $\gamma_t := \gamma_0 t^{-\zeta}$ with $\zeta \in [0,1)$ satisfies $\gamma_0 < C$, we have

$$\begin{split} \text{Bias} &\lesssim \frac{\gamma_0 r' n^{\zeta - 1}}{\sqrt{\mathbb{E}[1 - \gamma_0 r' \text{Tr}(\Sigma_m)]^4}} \|f^*\|^2 \sim \mathcal{O}\left(n^{\zeta - 1}\right) \,.\\ \text{Jariance} &\lesssim \frac{\gamma_0 r' \tau^2}{\sqrt{\mathbb{E}[1 - \gamma_0 r' \text{Tr}(\Sigma_m)]^2}} \begin{cases} mn^{\zeta - 1}, \text{ if } m \leqslant n\\ \gamma_0 \tau^2, \text{ if } m > n \end{cases} \\ &\sim \begin{cases} \mathcal{O}\left(mn^{\zeta - 1}\right), \text{ if } m \leqslant n\\ \mathcal{O}\left(1\right), \text{ if } m > n \end{cases}. \end{split}$$

Experiments on MNIST

Gaussian kernel
$$k(\mathbf{x},\mathbf{x}') = \exp\left(-rac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{2d}
ight)$$

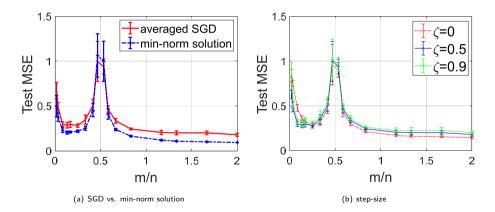
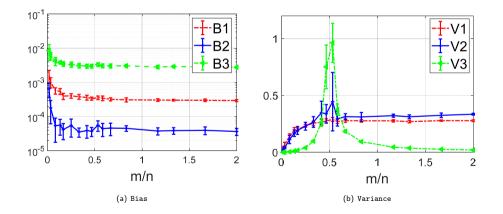


Figure: Test MSE (mean \pm std.) of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7) for d = 784 and n = 600.

Slide 19/ 24

Validation for bias and variance

- ▶ noise: $\varepsilon \sim \mathcal{N}(0, 1)$
- Σ_m , $\widetilde{\Sigma}_m$: sample covariance matrices with Monte Carlo sampling



Outline

Research overview

Random features in double descent

Conclusion

RFF with double descent | Fanghui Liu, fanghui.liu@epfl.ch

 $\left\{ \begin{array}{l} \mbox{high dimensional random features model trained by SGD} \\ \mbox{findings} \\ \left\{ \begin{array}{l} \mbox{expected covariance operator } \widetilde{\Sigma}_m \mbox{ has only two distinct eigenvalues} \\ \mbox{bias-variance decomposition: multiple randomness sources} \\ \mbox{monotonic decreasing bias and unimodal variance} \\ \mbox{optimization effect on excess risk: constant step-size SGD vs. min-norm solution} \end{array} \right.$

Future works:

- SGD: implicit bias/regularization
- function space, high dimensions

Thanks for your attention!

Q & A

my homepage http://lfhsgre.org for more information!

NEW: ERC Advanced Grant E-DUALITY

Exploring duality for future data-driven modelling

References |

 Salomon Bochner. Harmonic Analysis and the Theory of Probability. Courier Corporation, 2005.

[2] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, and Weller Adrian. Rethinking attention with performers.

In International Conference on Learning Representations, 2021.

[3] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the classical bias-variance trade-off. the National Academy of Sciences, 116(32):15849-15854, 2019.