Be aware of model capacity when talking about generalization in machine learning

Fanghui Liu

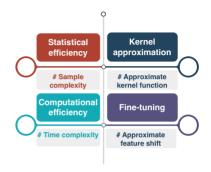
fanghui.liu@warwick.ac.uk

Department of Computer Science, University of Warwick, UK Centre for Discrete Mathematics and its Applications (DIMAP), Warwick

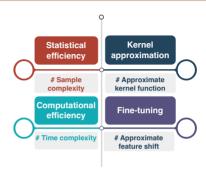
- ☐ Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML



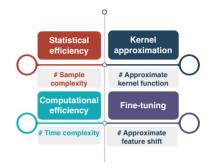
- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML



- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize **learning efficiency** in theory
- contribute to practice



- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize **learning efficiency** in theory
- contribute to practice

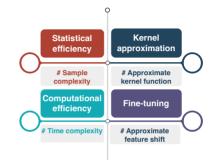


Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in **high dimensions** that can be a **curse**!

— David Donoho, 2000. (Richard E. Bellman, 1957)

- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize **learning efficiency** in theory
- contribute to practice



Learning efficiency (Curse of Dimensionality, CoD)

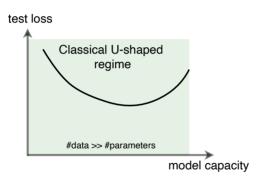
Machine learning works in **high dimensions** that can be a **curse**!

— David Donoho, 2000. (Richard E. Bellman, 1957)

In the era of machine learning

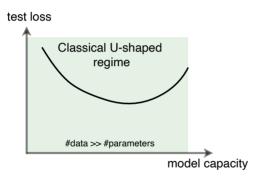
Prefer more data and larger model to obtain better performance...

ML textbooks: Larger models tend to overfit!

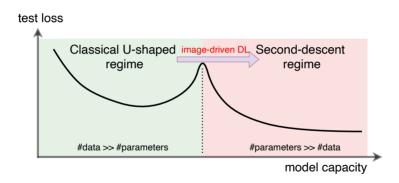


ML textbooks: Larger models tend to overfit!

Practice of deep learning: bigger models perform better!



Practice of deep learning: bigger models perform better!



Proposed explanation: double descent (Belkin et al., 2019)

Learning paradigm in the past twenty years

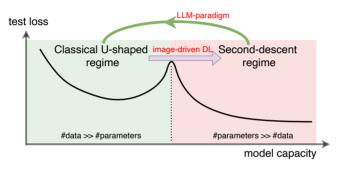


Figure 1: Paradigm among test loss, data, and model capacity.

Scaling law (Kaplan et al., 2020) in the era of LLMs test loss = A \times Model Size^{-a} + B \times Data Size^{-b} + C

Learning paradigm in the past twenty years

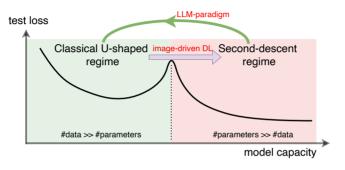


Figure 1: Paradigm among test loss, data, and model capacity.

Scaling law (Kaplan et al., 2020) in the era of LLMs test loss = A \times Model Size^{-a} + B \times Data Size^{-b} + C

Too many learning curves...

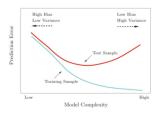
- U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
- double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
- scaling law (Kaplan et al., 2020; Paquette et al., 2024)

Too many learning curves...

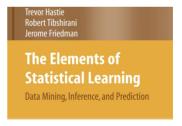
- U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
- double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
- scaling law (Kaplan et al., 2020; Paquette et al., 2024)

Bias-variance decomposition

Test error = $Bias^2 + Variance$



(Hastie et al., 2009, Figure 2.11)



Too many learning curves...

- U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
- double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
- scaling law (Kaplan et al., 2020; Paquette et al., 2024)

Bias-variance decomposition

Test error = $Bias^2 + Variance$

"Remove bias-variance trade-offs from ML textbooks"

Trade-off is a misnomer, by Geman et al. (1992); Neal (2019); Wilson (2025).

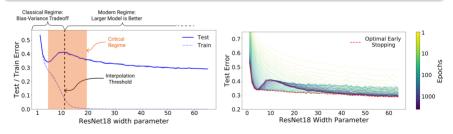
I can define model capacity at random and see whatever curve I want to see.

— Ben Recht, 2025

Too many learning curves...

- U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
- double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
- scaling law (Kaplan et al., 2020; Paquette et al., 2024)

Double descent can disappear for the same architecture!



(a) Results on ResNet18 (Nakkiran et al., 2019) (b) Optimal early stopping (Nakkiran et al., 2019).

(Bartlett, 1998)

(Bartlett, 1998)

- Theoretical studies (Neyshabur et al., 2015; Savarese et al., 2019)
- Min-norm solution (Hastie et al., 2022)
- Applications: neural networks pruning (Molchanov et al., 2017), lottery ticket hypothesis (Frankle and Carbin, 2019)

(Bartlett, 1998)

"The size of the weights is more important than the size of the network!"

- Theoretical studies (Neyshabur et al., 2015; Savarese et al., 2019)
- Min-norm solution (Hastie et al., 2022)
- Applications: neural networks pruning (Molchanov et al., 2017), lottery ticket hypothesis (Frankle and Carbin, 2019)

How these learning curves behave under a more suitable model capacity?

(Bartlett, 1998)

"The size of the weights is more important than the size of the network!"

- Theoretical studies (Neyshabur et al., 2015; Savarese et al., 2019)
- Min-norm solution (Hastie et al., 2022)
- Applications: neural networks pruning (Molchanov et al., 2017), lottery ticket hypothesis (Frankle and Carbin, 2019)

How these learning curves behave under a more suitable model capacity?

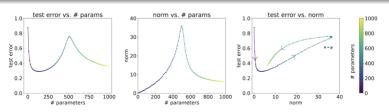


Figure 3: Stanford CS229 lecture notes (Ng and Ma, 2023, Figure 8.12).

(Bartlett, 1998)

- ☐ How to **precisely** characterize the relationship under norm-based model capacity?
- \bullet Reshape bias-variance trade-offs, double descent, scaling law under ℓ_2 norm-based capacity!
- Yichen Wang, Yudong Chen, Lorenzo Rosasco, Fanghui Liu. Re-examining double descent and scaling laws under norm-based capacity via deterministic equivalence.
 2025. arXiv

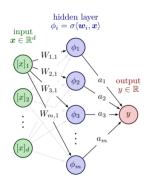
(Bartlett, 1998)

- ☐ How to **precisely** characterize the relationship under norm-based model capacity?
- ullet Reshape bias-variance trade-offs, double descent, scaling law under ℓ_2 norm-based capacity!
- Yichen Wang, Yudong Chen, Lorenzo Rosasco, Fanghui Liu. Re-examining double descent and scaling laws under norm-based capacity via deterministic equivalence.
 2025. arXiv
- What is the induced function space and statistical/computational efficiency under norm-based capacity?

(Bartlett, 1998)

- ☐ How to **precisely** characterize the relationship under norm-based model capacity?
- \bullet Reshape bias-variance trade-offs, double descent, scaling law under ℓ_2 norm-based capacity!
- Yichen Wang, Yudong Chen, Lorenzo Rosasco, Fanghui Liu. Re-examining double descent and scaling laws under norm-based capacity via deterministic equivalence.
 2025. arXiv
- What is the induced function space and statistical/computational efficiency under norm-based capacity?
- Which function class can be **efficiently** learned by neural networks?
- Fanghui Liu, Leello Dadi, and Volkan Cevher. Learning with norm constrained, over-parameterised, two-layer neural networks. JMLR 2024.

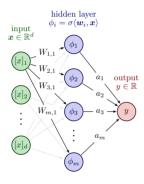
Background: Random features model, two-layer neural networks



$$f_m(\mathbf{x}; \boldsymbol{\theta}) = \sum_{i=1}^m \mathbf{a}_i \phi(\mathbf{x}, \mathbf{w}_i), \quad \boldsymbol{\theta} := \{(\mathbf{a}_i, \mathbf{w}_i)\}_{i=1}^m$$

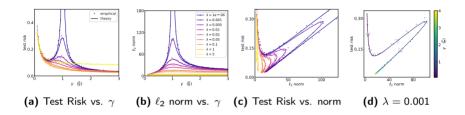
- $\phi: \mathcal{X} \times \mathcal{W} \to \mathbb{R}$, e.g., ReLU: $\phi(\mathbf{x}, \mathbf{w}) = \max(\langle \mathbf{x}, \mathbf{w} \rangle, 0)$
- and Recht (2007): $\circ \{\mathbf{w}_i\}_{i=1}^{m} \stackrel{iid}{\sim} \mu \text{ for a given } \mu \in \mathcal{P}(\mathcal{W})$

Background: Random features model, two-layer neural networks

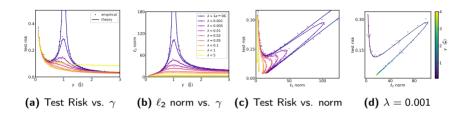


$$f_m(\mathbf{x}; \boldsymbol{\theta}) = \sum_{i=1}^m \mathbf{a}_i \phi(\mathbf{x}, \mathbf{w}_i), \quad \boldsymbol{\theta} := \{(\mathbf{a}_i, \mathbf{w}_i)\}_{i=1}^m$$

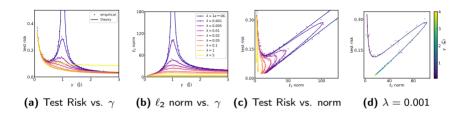
- $\phi: \mathcal{X} \times \mathcal{W} \to \mathbb{R}$, e.g., ReLU: $\phi(\mathbf{x}, \mathbf{w}) = \max(\langle \mathbf{x}, \mathbf{w} \rangle, 0)$
- Random features models (RFMs) Rahimi and Recht (2007):
 - $\circ \ \{ {\it w}_i \}_{i=1}^m \stackrel{\it iid}{\sim} \mu \ {\rm for \ a \ given} \ \mu \in \mathcal{P}(\mathcal{W})$
 - \circ only train the second layer



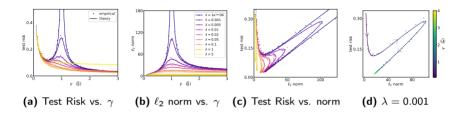
- $\gamma := p/n$, p : model size (width), n : data size
- Phase transition exists but double descent does not exist
- Reshape scaling-law:
 test loss = A × Data Size^{-a} + B × Model Size^{-b} + C with a, b > 0
 test loss = A × Data Size^{-a} × Norm Capacity^{-b} with a > 0 and b ∈ ℝ
- Over-parameterization is still better than under-parameterization



- $\gamma := p/n$, p : model size (width), n : data size
- Phase transition exists but double descent does not exist
- Reshape scaling-law:
 test loss = A × Data Size^{-a} + B × Model Size^{-b} + C with a, b > 0
 test loss = A × Data Size^{-a} × Norm Capacity^{-b} with a > 0 and b ∈ R
- Over-parameterization is still better than under-parameterization

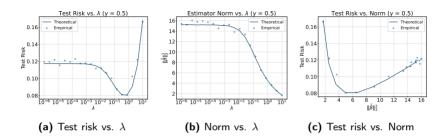


- $\gamma := p/n$, p : model size (width), n : data size
- Phase transition exists but double descent does not exist
- Reshape scaling-law:
 test loss = A × Data Size^{-a} + B × Model Size^{-b} + C with a, b > 0
 test loss = A × Data Size^{-a} × Norm Capacity^{-b} with a > 0 and b ∈ ℝ
- Over-parameterization is still better than under-parameterization

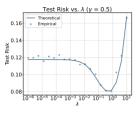


- $\gamma := p/n$, p : model size (width), n : data size
- Phase transition exists but double descent does not exist
- Reshape scaling-law:
 test loss = A × Data Size^{-a} + B × Model Size^{-b} + C with a, b > 0
 test loss = A × Data Size^{-a} × Norm Capacity^{-b} with a > 0 and b ∈ ℝ
- Over-parameterization is still **better than** under-parameterization

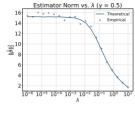
Precise analysis: L-curve (Hansen, 1992)



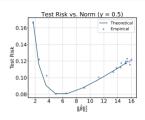
Precise analysis: L-curve (Hansen, 1992)



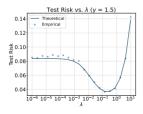
(a) Test risk vs. λ



(b) Norm vs. λ



(c) Test risk vs. Norm



Test Risk vs. Norm (γ = 1.5)

0.14

0.12

0.02

0.00

0.00

0.04

0.5 10 15 20 25 30 35 40

(d) Test risk vs. λ

(e) Norm vs. λ

(f) Test risk vs. Norm

- n i.i.d. samples $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ with $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- $y = \langle \boldsymbol{\beta}_*, \boldsymbol{x} \rangle + \varepsilon$, $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}(\varepsilon) = \sigma^2$, covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- ridge regression: $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

Target: precise analysis

The expected test risk $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_*\|_{\Sigma}^2$ vs. the norm $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}}\|_2^2$

- n i.i.d. samples $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ with $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- $y = \langle \boldsymbol{\beta}_*, \boldsymbol{x} \rangle + \varepsilon$, $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}(\varepsilon) = \sigma^2$, covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- ridge regression: $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

Target: precise analysis

The expected test risk $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_*\|_{\Sigma}^2$ vs. the norm $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}}\|_2^2$

- n i.i.d. samples $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ with $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- $y = \langle \boldsymbol{\beta}_*, \boldsymbol{x} \rangle + \varepsilon$, $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}(\varepsilon) = \sigma^2$, covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- ridge regression: $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

Target: precise analysis

The expected test risk $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_*\|_{\Sigma}^2$ vs. the norm $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}}\|_2^2$

☐ Deterministic equivalence (Cheng and Montanari, 2024; Misiakiewicz and Saeed, 2024): law of large samples/dimensions in random matrix theory

The empirical spectral measure converges to a deterministic limit.

- n i.i.d. samples $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ with $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$
- $y = \langle \boldsymbol{\beta}_*, \boldsymbol{x} \rangle + \varepsilon$, $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}(\varepsilon) = \sigma^2$, covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- ridge regression: $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

Target: precise analysis

The expected test risk $\mathbb{E}_{\varepsilon}\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_*\|_{\boldsymbol{\Sigma}}^2$ vs. the norm $\mathbb{E}_{\varepsilon}\|\hat{\boldsymbol{\beta}}\|_2^2$

Deterministic equivalence (Cheng and Montanari, 2024; Misiakiewicz and Saeed, 2024): law of large samples/dimensions in random matrix theory

$$\operatorname{Tr}\!\left(oldsymbol{X}^{\! op} oldsymbol{X} (oldsymbol{X}^{\! op} oldsymbol{X} + \lambda)^{-1}
ight) \sim \operatorname{Tr}\!\left(oldsymbol{\Sigma} (oldsymbol{\Sigma} + \lambda_*)^{-1}
ight), w.h.p.$$

- ullet \sim can be **asymptotic** or **non-asymptotic** at the rate of $\mathcal{O}(1/\sqrt{n})$.
- λ_* is the non-negative solution to the self-consistent equation $n \frac{\lambda}{\lambda_-} = \text{Tr}(\Sigma(\Sigma + \lambda_*)^{-1}).$

Our results

Theorem (Deterministic equivalence of estimator's norm)

We have a bias-variance decomposition $\mathbb{E}_{\varepsilon} \|\hat{\beta}\|_2^2 = \mathcal{B}_{\mathcal{N},\lambda} + \mathcal{V}_{\mathcal{N},\lambda}$.

For well-behaved data, we have

$$\mathsf{B}_{\mathsf{N},\lambda} := \left\langle \boldsymbol{\beta}_*, \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_*)^{-2} \boldsymbol{\beta}_* \right\rangle + \frac{\mathsf{Tr}(\boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_*)^{-2})}{n} \; \frac{\lambda_*^2 \langle \boldsymbol{\beta}_*, \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_*)^{-2} \boldsymbol{\beta}_* \rangle}{1 - \frac{1}{n} \, \mathsf{Tr}(\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_*)^{-2})}$$

$$\mathsf{V}_{\mathsf{N},\lambda} := \frac{\sigma^2 \operatorname{\mathsf{Tr}}(\mathbf{\Sigma}(\mathbf{\Sigma} + \lambda_*)^{-2})}{n - \operatorname{\mathsf{Tr}}(\mathbf{\Sigma}^2(\mathbf{\Sigma} + \lambda_*)^{-2})} \,.$$

Remark: Which model capacity suffices to characterize the test risk?

- Norm-based capacity: ✓ ©
- effective dimension-style $\operatorname{Tr}(\Sigma(\Sigma+\lambda I)^{-1})$: $X \odot$

Theorem (Deterministic equivalence of estimator's norm)

We have a bias-variance decomposition $\mathbb{E}_{\varepsilon} \|\hat{\beta}\|_{2}^{2} = \mathcal{B}_{\mathcal{N},\lambda} + \mathcal{V}_{\mathcal{N},\lambda}$. For well-behaved data, we have

$$\mathsf{B}_{\mathsf{N},\lambda} := \left\langle \beta_*, \Sigma^2 (\Sigma + \lambda_*)^{-2} \beta_* \right\rangle + \frac{\mathsf{Tr}(\Sigma (\Sigma + \lambda_*)^{-2})}{n} \frac{\lambda_*^2 \left\langle \beta_*, \Sigma (\Sigma + \lambda_*)^{-2} \beta_* \right\rangle}{1 - \frac{1}{n} \mathsf{Tr}(\Sigma^2 (\Sigma + \lambda_*)^{-2})} \;,$$

$$\mathsf{V}_{\mathsf{N},\lambda} := rac{\sigma^2 \, \mathsf{Tr}(\mathbf{\Sigma}(\mathbf{\Sigma} + \lambda_*)^{-2})}{n - \mathsf{Tr}(\mathbf{\Sigma}^2(\mathbf{\Sigma} + \lambda_*)^{-2})} \, .$$

Remark: Which model capacity suffices to characterize the test risk?

- Norm-based capacity: ✓ ©
- effective dimension-style $\operatorname{Tr}(\mathbf{\Sigma}(\mathbf{\Sigma}+\lambda I)^{-1})$: $\mathbf{X} \odot$

Our results

Theorem (Deterministic equivalence of estimator's norm)

We have a bias-variance decomposition $\mathbb{E}_{\varepsilon} \|\hat{\beta}\|_{2}^{2} = \mathcal{B}_{\mathcal{N},\lambda} + \mathcal{V}_{\mathcal{N},\lambda}$. For well-behaved data, we have

$$\mathsf{B}_{\mathsf{N},\lambda} := \left\langle \beta_*, \Sigma^2 (\Sigma + \lambda_*)^{-2} \beta_* \right\rangle + \frac{\mathsf{Tr}(\Sigma(\Sigma + \lambda_*)^{-2})}{n} \frac{\lambda_*^2 \left\langle \beta_*, \Sigma(\Sigma + \lambda_*)^{-2} \beta_* \right\rangle}{1 - \frac{1}{n} \mathsf{Tr}(\Sigma^2(\Sigma + \lambda_*)^{-2})} \;,$$

$$\mathsf{V}_{\mathsf{N},\lambda} := rac{\sigma^2 \, \mathsf{Tr}(\mathbf{\Sigma}(\mathbf{\Sigma} + \lambda_*)^{-2})}{n - \mathsf{Tr}(\mathbf{\Sigma}^2(\mathbf{\Sigma} + \lambda_*)^{-2})} \, .$$

Remark: Which model capacity suffices to characterize the test risk?

- Norm-based capacity: ✓ ⊙
- effective dimension-style $\operatorname{Tr}(\Sigma(\Sigma + \lambda I)^{-1})$: **X** \odot

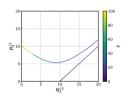
- \square Test risk R_{λ} and norm N_{λ} formulates a cubic curve (complex but precise).
- min-norm interpolator ($\lambda = 0$):

$$\mathsf{R}_0 = \left\{ \begin{array}{l} \mathsf{N}_0 - \|\boldsymbol{\beta}_*\|_2^2; \text{in under-parameterized regimes} \\ \sqrt{\left[\mathsf{N}_0 - (\|\boldsymbol{\beta}_*\|_2^2 - \sigma^2)\right]^2 + 4\|\boldsymbol{\beta}_*\|_2^2 \sigma^2} - \sigma^2 \,. \end{array} \right.$$

- optimal regularization $\lambda = \frac{d\sigma^2}{\|\beta^*\|_2^2}$ (Wu and Xu,
 - 2020): $R_{\lambda} = \|\beta_*\|_2^2 N_{\lambda}$
- $\lambda \to \infty$: $R_{\lambda} = (\|\beta_*\|_2 \sqrt{N_{\lambda}})^2$

- \square Test risk R_{λ} and norm N_{λ} formulates a cubic curve (complex but precise).
- min-norm interpolator ($\lambda = 0$):

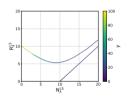
$$\mathsf{R}_0 = \left\{ \begin{array}{l} \mathsf{N}_0 - \|\boldsymbol{\beta}_*\|_2^2; \text{in under-parameterized regimes} \\ \sqrt{\left[\mathsf{N}_0 - (\|\boldsymbol{\beta}_*\|_2^2 - \sigma^2)\right]^2 + 4\|\boldsymbol{\beta}_*\|_2^2\sigma^2} - \sigma^2 \,. \end{array} \right.$$



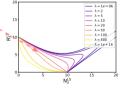
- optimal regularization $\lambda = \frac{d\sigma^2}{\|\beta^*\|_2^2}$ (Wu and Xu
- $\lambda \to \infty$: $R_{\lambda} = (\|\beta_*\|_2 \sqrt{N_{\lambda}})^2$

- \square Test risk R_{λ} and norm N_{λ} formulates a cubic curve (complex but precise).
- min-norm interpolator ($\lambda = 0$):

$$\mathsf{R}_0 = \left\{ \begin{array}{l} \mathsf{N}_0 - \|\boldsymbol{\beta}_*\|_2^2; \text{in under-parameterized regimes} \\ \sqrt{\left[\mathsf{N}_0 - (\|\boldsymbol{\beta}_*\|_2^2 - \sigma^2)\right]^2 + 4\|\boldsymbol{\beta}_*\|_2^2\sigma^2} - \sigma^2 \,. \end{array} \right.$$

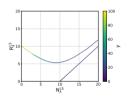


• optimal regularization $\lambda = \frac{d\sigma^2}{\|\beta^*\|_2^2}$ (Wu and Xu, 2020): $R_{\lambda} = \|\beta_*\|_2^2 - N_{\lambda}$

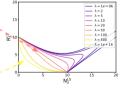


- \square Test risk R_{λ} and norm N_{λ} formulates a cubic curve (complex but precise).
- min-norm interpolator ($\lambda = 0$):

$$\mathsf{R}_0 = \left\{ \begin{array}{l} \mathsf{N}_0 - \|\boldsymbol{\beta}_*\|_2^2; \text{in under-parameterized regimes} \\ \sqrt{\left[\mathsf{N}_0 - (\|\boldsymbol{\beta}_*\|_2^2 - \sigma^2)\right]^2 + 4\|\boldsymbol{\beta}_*\|_2^2\sigma^2} - \sigma^2 \,. \end{array} \right.$$



- optimal regularization $\lambda = \frac{d\sigma^2}{\|\beta^*\|_2^2}$ (Wu and Xu, 2020): $R_{\lambda} = \|\beta_*\|_2^2 N_{\lambda}$
- $\lambda \to \infty$: $R_{\lambda} = (\|\beta_*\|_2 \sqrt{N_{\lambda}})^2$



Precise analysis via deterministic equivalence

- ☐ Precisely describe the learning curve.
 - phase transitions, (non-)monotonicity, etc.
- ☐ Enables accurate comparison between estimators/algorithms.
 - Foundations of scaling law: data or parameter under the same budget, etc.

Precise analysis via deterministic equivalence

- ☐ Precisely describe the learning curve.
 - phase transitions, (non-)monotonicity, etc.
- Enables accurate comparison between estimators/algorithms.
 - Foundations of scaling law: data or parameter under the same budget, etc.

Table 1: Complexity measures compared in the empirical study (Jiang et al., 2020), and their correlation with generalization.

name	definition	rank correlation
Parameter Frobenius norm	$\sum_{i=1}^{L} \ \boldsymbol{W}_i \ _F^2$	0.073
	$\sum_{i=1}^L \ W_i - W_i^0 \ _{\mathrm{F}}^2$	

Table 1: Complexity measures compared in the empirical study (Jiang et al., 2020), and their correlation with generalization.

name	definition	rank correlation
Parameter Frobenius norm	$\sum_{i=1}^{L} \ \mathbf{W}_i \ _F^2$	0.073
Frobenius distance to initialization	$rac{\sum_{i=1}^L \ oldsymbol{W}_i\ _F^2}{\sum_{i=1}^L \ oldsymbol{W}_i - oldsymbol{W}_i^0\ _{\mathrm{F}}^2}$	-0.263
Spectral complexity	$\prod_{i=1}^{L} \ \boldsymbol{W}_{i} \ \left(\sum_{i=1}^{L} \frac{\ \boldsymbol{W}_{i} \ _{2,1}^{3/2}}{\ \boldsymbol{W}_{i} \ _{3}^{3/2}} \right)^{2/3}$	-0.537
Fisher-Rao	$\frac{(L+1)^2}{n} \sum_{i=1}^n \langle \mathbf{W}, \nabla_{\mathbf{W}} \ell(h_{\mathbf{W}}(\mathbf{x}_i), y_i) \rangle$	0.078

Table 1: Complexity measures compared in the empirical study (Jiang et al., 2020), and their correlation with generalization.

name	definition	rank correlation
Parameter Frobenius norm	$\sum_{i=1}^{L} \ \mathbf{W}_i \ _F^2$	0.073
Frobenius distance to initialization	$rac{\sum_{i=1}^L \ oldsymbol{W}_i\ _F^2}{\sum_{i=1}^L \ oldsymbol{W}_i - oldsymbol{W}_i^{0}\ _{\mathrm{F}}^2}$	-0.263
Spectral complexity	$\prod_{i=1}^{L} \ \boldsymbol{W}_i \ \left(\sum_{i=1}^{L} \frac{\ \boldsymbol{W}_i \ _{2,1}^{3/2}}{\ \boldsymbol{W}_i \ _{3}^{3/2}} \right)^{2/3}$	-0.537
Fisher-Rao	$\frac{(L+1)^2}{n} \sum_{i=1}^n \langle \boldsymbol{W}, \nabla_{\boldsymbol{W}} \ell(h_{\boldsymbol{W}}(\boldsymbol{x}_i), y_i) \rangle$	0.078
Path-norm	$\sum_{(i_{m{0}},\ldots,i_{L})}\prod_{j=m{1}}^{L}\Big(m{W}_{i_{j},i_{j-m{1}}}\Big)^{m{2}}$	0.373

Table 1: Complexity measures compared in the empirical study (Jiang et al., 2020), and their correlation with generalization.

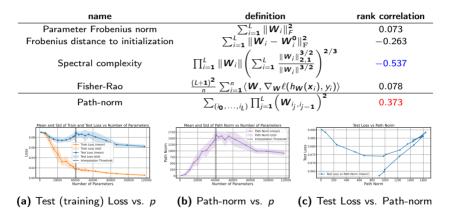
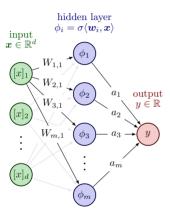
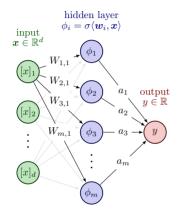


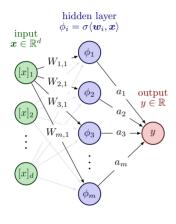
Figure 5: Experiments on two-layer neural networks.





 ℓ_1 -path norm (Neyshabur et al., 2015)

$$\|oldsymbol{ heta}\|_{\mathcal{P}} := rac{1}{m} \sum_{k=1}^m |\mathsf{a}_k| \|oldsymbol{w}_k\|_1$$

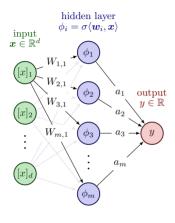


 ℓ_1 -path norm (Neyshabur et al., 2015)

$$\|m{ heta}\|_{\mathcal{P}} := rac{1}{m} \sum_{k=1}^{m} |a_k| \|m{w}_k\|_1$$

 equivalent to Barron spaces B (Barron, 1993; E et al., 2021)

$$\mathcal{B} := \cup_{\mu \in \mathcal{P}(\mathcal{W})} \{ f_{\mathsf{a}} : \|\mathbf{a}\|_{L^{2}(\mu)} < \infty \}$$



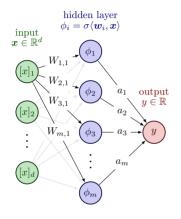
 ℓ_1 -path norm (Neyshabur et al., 2015)

$$\|m{\theta}\|_{\mathcal{P}} := \frac{1}{m} \sum_{k=1}^{m} |a_k| \|m{w}_k\|_1$$

 equivalent to Barron spaces B (Barron, 1993; E et al., 2021)

$$\mathcal{B} := \cup_{\mu \in \mathcal{P}(\mathcal{W})} \{ f_{\mathsf{a}} : \| \mathsf{a} \|_{L^{2}(\mu)} < \infty \}$$

 Variation in only a few directions (Parhi and Nowak, 2022)



 ℓ_1 -path norm (Neyshabur et al., 2015)

$$\|m{ heta}\|_{\mathcal{P}} := rac{1}{m} \sum_{k=1}^m |a_k| \|m{w}_k\|_1$$

 equivalent to Barron spaces B (Barron, 1993; E et al., 2021)

$$\mathcal{B} := \cup_{\mu \in \mathcal{P}(\mathcal{W})} \{ f_{\mathbf{a}} : \|\mathbf{a}\|_{L^{2}(\mu)} < \infty \}$$

 Variation in only a few directions (Parhi and Nowak, 2022)

Can neural networks identify this structure?

Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$)

To achieve ϵ -excess risk.

- Kernel methods require $\Omega(\epsilon^{-d})$ samples.
- Two-layer neural networks require $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$ samples, smaller than ϵ^{-2}

Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$)

To achieve ϵ -excess risk,

- Kernel methods require $\Omega(\epsilon^{-d})$ samples.
- Two-layer neural networks require $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$ samples. smaller than ϵ^{-2}

Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$)

To achieve ϵ -excess risk,

- Kernel methods require $\Omega(\epsilon^{-d})$ samples.
- Two-layer neural networks require $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$ samples. smaller than ϵ^{-2}

No Curse of Dimensionality: NNs adapt to directional smoothness.

Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$)

To achieve ϵ -excess risk,

- Kernel methods require $\Omega(\epsilon^{-d})$ samples.
- Two-layer neural networks require $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$ samples. smaller than ϵ^{-2}

No Curse of Dimensionality: NNs adapt to directional smoothness.

☐ Track sample complexity (via metric entropy) and dimension dependence

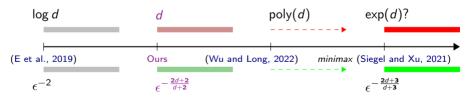
Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$)

To achieve ϵ -excess risk,

- Kernel methods require $\Omega(\epsilon^{-d})$ samples.
- Two-layer neural networks require $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$ samples. smaller than ϵ^{-2}

No Curse of Dimensionality: NNs adapt to directional smoothness.

☐ Track sample complexity (via metric entropy) and dimension dependence



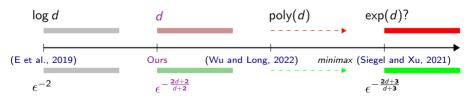
Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$)

To achieve ϵ -excess risk,

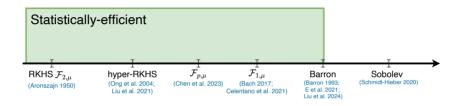
- Kernel methods require $\Omega(\epsilon^{-d})$ samples.
- Two-layer neural networks require $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$ samples. smaller than ϵ^{-2}

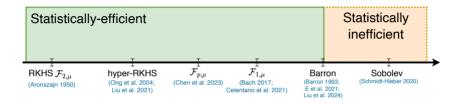
No Curse of Dimensionality: NNs adapt to directional smoothness.

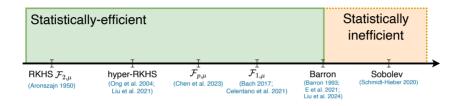
☐ Track sample complexity (via metric entropy) and dimension dependence



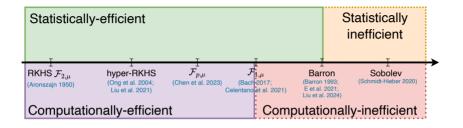
The "best" trade-off between ϵ and d.

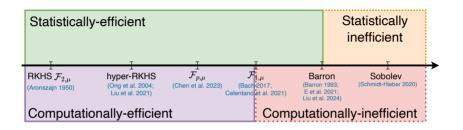






Optimization in Barron spaces is NP hard: curse of dimensionality! (Bach, 2017)





- ReLU neurons (Chen and Narayanan, 2023)
- Low-dimensional polynomials (Arous et al., 2021; Lee et al., 2024)

Takeaway messages

Deep learning phenomena \Rightarrow interesting mathematical problems

- ☐ Be aware of model capacity!
 - Reshape bias-variance trade-offs, double descent, scaling law under proper ℓ_2 norm-based capacity via deterministic equivalence.

Takeaway messages

Deep learning phenomena ⇒ interesting mathematical problems

- Be aware of model capacity!
 - Reshape bias-variance trade-offs, double descent, scaling law under proper \(\ell_2 \)
 norm-based capacity via deterministic equivalence.

- Which function class can be efficiently learned by neural networks?
 - Neural networks can adapt to low-dimensional structure and avoid CoD!



Takeaway messages

$\textbf{Deep learning phenomena} \Rightarrow \textbf{interesting mathematical problems}$

- Be aware of model capacity!
 - Reshape bias-variance trade-offs, double descent, scaling law under proper ℓ_2 norm-based capacity via deterministic equivalence.

- Which function class can be efficiently learned by neural networks?
 - Neural networks can adapt to low-dimensional structure and avoid CoD!

Theoretical advances ⇒ principled guidance in practical problems

- ☐ How does our theory contribute to practical fine-tuning problems?
 - One-step full gradient can be sufficient! [GitHub]

References

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on non-convex losses from high-dimensional inference. *Journal of Machine Learning Research*, 22(106):1–51, 2021.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research*, 18(1):629–681, 2017.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. *IEEE Transactions on Information theory*, 39(3): 930–945, 1993.

- Peter Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. *IEEE Transactions on Information Theory*, 44(2):525–536, 1998.
- Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the classical bias—variance trade-off. *the National Academy of Sciences*, 116(32):15849–15854, 2019.
- Hongrui Chen, Jihao Long, and Lei Wu. A duality framework for generalization analysis of random feature models and two-layer neural networks. *arXiv preprint arXiv:2305.05642*, 2023.
- Sitan Chen and Shyam Narayanan. A faster and simpler algorithm for learning shallow networks. *arXiv preprint arXiv:2307.12496*, 2023.
- Chen Cheng and Andrea Montanari. Dimension free ridge regression. *The Annals of Statistics*, 52(6):2879–2912, 2024.

- Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer neural networks. Communications in Mathematical Sciences, 17 (5):1407–1425, 2019.
- Weinan E, Chao Ma, and Lei Wu. The barron space and the flow-induced function spaces for neural network models. *Constructive Approximation*, pages 1–38, 2021.
- Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations*, 2019.
- Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma. *Neural computation*, 4(1):1–58, 1992.
- Per Christian Hansen. Analysis of discrete ill-posed problems by means of the l-curve. *SIAM Review*, 34(4):561–580, 1992.

- Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. *The elements of statistical learning: data mining, inference, and prediction*, volume 2. Springer, 2009.
- Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-dimensional ridgeless least squares interpolation. *Annals of Statistics*, 50(2):949–986, 2022.
- Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic generalization measures and where to find them. In *International Conference on Learning Representations*, 2020.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv preprint* arXiv:2001.08361, 2020.

- Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional polynomials with sgd near the information-theoretic limit. arXiv preprint arXiv:2406.01581, 2024.
- Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-norm interpolants and restricted lower isometry of kernels. In *Conference on Learning Theory*, pages 2683–2711, 2020.
- Theodor Misiakiewicz and Basil Saeed. A non-asymptotic theory of kernel ridge regression: deterministic equivalents, test error, and gcv estimator. arXiv preprint arXiv:2403.08938, 2024.
- Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural networks for resource efficient inference. In *International Conference on Learning Representations*, 2017.

References vi

- Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data hurt. In *International Conference on Learning Representations*, 2019.
- Brady Neal. On the bias-variance tradeoff: Textbooks need an update. *arXiv* preprint arXiv:1912.08286, 2019.
- Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural networks. In *Conference on Learning Theory*, pages 1376–1401. PMLR, 2015.
- Andrew Ng and Tengyu Ma. CS229 lecture notes. 2023. URL https://cs229.stanford.edu/main_notes.pdf.
- Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of compute-optimal neural scaling laws. *arXiv preprint arXiv:2405.15074*, 2024.

References vii

- Rahul Parhi and Robert D Nowak. Near-minimax optimal estimation with shallow ReLU neural networks. *IEEE Transactions on Information Theory*, 2022.
- Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In *Advances in Neural Information Processing Systems*, pages 1177–1184, 2007.
- Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded norm networks look in function space? In *Conference on Learning Theory*, pages 2667–2690. PMLR, 2019.
- Jonathan W Siegel and Jinchao Xu. Sharp bounds on the approximation rates, metric entropy, and *n*-widths of shallow neural networks. *arXiv* preprint *arXiv*:2101.12365, 2021.

References viii

- Aad W Van Der Vaart, Adrianus Willem van der Vaart, Aad van der Vaart, and Jon Wellner. *Weak convergence and empirical processes: with applications to statistics.* Springer Science & Business Media, 1996.
- Vladimir N. Vapnik. *The Nature of Statistical Learning Theory*. Springer, 1995.
- Andrew Gordon Wilson. Deep learning is not so mysterious or different. *arXiv* preprint arXiv:2503.02113, 2025.
- Denny Wu and Ji Xu. On the optimal weighted ℓ_2 regularization in overparameterized linear regression. In *Advances in Neural Information Processing Systems*, pages 10112–10123, 2020.
- Lei Wu and Jihao Long. A spectral-based analysis of the separation between two-layer neural networks and linear methods. *Journal of Machine Learning Research*, 119:1–34, 2022.

Experimental results

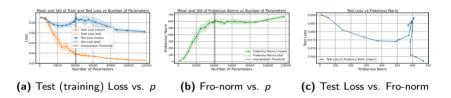


Figure 6: Experiments on two-layer fully connected neural networks with noise level $\eta=0.2$. The **left** figure shows the relationship between test (training) loss and the number of the parameters p. The **middle** figure shows the relationship between the Frobenius norm and p. The **right** figure shows the relationship between the test loss and Fro-norm.

- $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mu$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- $y = \langle \beta_*, \mathbf{x} \rangle + \varepsilon$ with $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}(\varepsilon) = \sigma^2$
- ridge regression: $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$
- ullet min- ℓ_2 -norm interpolation: $\hat{oldsymbol{eta}}_{\mathsf{min}} = \mathrm{argmin}_{oldsymbol{eta}} \|oldsymbol{eta}\|_2, \mathsf{s.t.}$ $oldsymbol{X}oldsymbol{eta} = oldsymbol{y}$
- expected test risk: bias-variance decomposition

$$\mathcal{R}^{\mathrm{LS}} := \mathbb{E}_{\varepsilon} \|\boldsymbol{\beta}_* - \hat{\boldsymbol{\beta}}\|_{\boldsymbol{\Sigma}}^2 = \underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}} + \underbrace{\mathrm{tr}(\boldsymbol{\Sigma}\mathrm{Cov}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}}}$$

•
$$\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \lambda^2 \langle eta_*, (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{\Sigma} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} eta_* \rangle$$

•
$$\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \sigma^2 \mathrm{Tr}(\boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-2})$$

*Intuitive fact: for i.i.d. sub-Gaussian data X, we have

$$\frac{1}{n} \mathbf{X}^{\top} \mathbf{X} - \mathbf{\Sigma} \|_{op} = \Theta(\sqrt{d/n}), w.h.p.$$

- $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mu$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- $y = \langle \beta_*, \mathbf{x} \rangle + \varepsilon$ with $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}(\varepsilon) = \sigma^2$
- ridge regression: $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$
- ullet min- ℓ_2 -norm interpolation: $\hat{eta}_{\mathsf{min}} = \mathrm{argmin}_{eta} \|oldsymbol{eta}\|_2, \mathsf{s.t.}$ $oldsymbol{X}eta = oldsymbol{y}$
- expected test risk: bias-variance decomposition

$$\mathcal{R}^{\mathrm{LS}} := \mathbb{E}_{\varepsilon} \|\boldsymbol{\beta}_* - \hat{\boldsymbol{\beta}}\|_{\boldsymbol{\Sigma}}^2 = \underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}} + \underbrace{\operatorname{tr}(\boldsymbol{\Sigma} \mathrm{Cov}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}}}.$$

- $\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \lambda^2 \langle eta_*, (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{\Sigma} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} eta_* \rangle$
- $\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \sigma^2 \mathrm{Tr}(\boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-2})$
- *Intuitive fact: for i.i.d. sub-Gaussian data X, we have

$$\|\frac{1}{n}\mathbf{X}^{\top}\mathbf{X} - \mathbf{\Sigma}\|_{op} = \Theta(\sqrt{d/n}), w.h.p.$$

- $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mu$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- $y = \langle \beta_*, \mathbf{x} \rangle + \varepsilon$ with $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}(\varepsilon) = \sigma^2$
- ullet ridge regression: $\hat{oldsymbol{eta}} = (oldsymbol{X}^{ op} oldsymbol{X} + \lambda oldsymbol{I})^{-1} oldsymbol{X}^{ op} oldsymbol{y}$
- ullet min- ℓ_2 -norm interpolation: $\hat{eta}_{\mathsf{min}} = \mathrm{argmin}_{eta} \|oldsymbol{eta}\|_2, \mathsf{s.t.}$ $oldsymbol{X}eta = oldsymbol{y}$
- expected test risk: bias-variance decomposition

$$\mathcal{R}^{\text{LS}} := \mathbb{E}_{\varepsilon} \|\boldsymbol{\beta}_* - \hat{\boldsymbol{\beta}}\|_{\boldsymbol{\Sigma}}^2 = \underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\text{LS}}} + \underbrace{\text{tr}(\boldsymbol{\Sigma} \text{Cov}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathcal{R},\lambda}^{\text{LS}}}.$$

- $\mathcal{B}_{\mathcal{R},\lambda}^{LS} = \lambda^2 \langle \boldsymbol{\beta}_*, (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Sigma} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\beta}_* \rangle$
- $\bullet \ \mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \sigma^2 \mathrm{Tr}(\boldsymbol{\Sigma} \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I})^{-2})$
- *Intuitive fact: for i.i.d. sub-Gaussian data X, we have

$$\|rac{1}{n}oldsymbol{X}^{ op}oldsymbol{X}-oldsymbol{\Sigma}\|_{op}=\Theta(\sqrt{d/n})\,,$$
 w.h.p.

- $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mu$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, covariance matrix $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- $y = \langle \beta_*, \mathbf{x} \rangle + \varepsilon$ with $\mathbb{E}(\varepsilon) = 0$ and $\mathbb{V}(\varepsilon) = \sigma^2$
- ridge regression: $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$
- ullet min- ℓ_2 -norm interpolation: $\hat{eta}_{\mathsf{min}} = \mathrm{argmin}_{eta} \|oldsymbol{eta}\|_2, \mathsf{s.t.}$ $oldsymbol{X}eta = oldsymbol{y}$
- expected test risk: bias-variance decomposition

$$\mathcal{R}^{\mathrm{LS}} := \mathbb{E}_{\varepsilon} \|\boldsymbol{\beta}_* - \hat{\boldsymbol{\beta}}\|_{\boldsymbol{\Sigma}}^2 = \underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}} + \underbrace{\operatorname{tr}(\boldsymbol{\Sigma} \mathrm{Cov}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}}}.$$

- $\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \lambda^2 \langle \boldsymbol{\beta}_*, (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Sigma} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\beta}_* \rangle$
- $\bullet \ \mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \sigma^2 \mathrm{Tr} (\boldsymbol{\Sigma} \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I})^{-2})$
- *Intuitive fact: for i.i.d. sub-Gaussian data X, we have

$$\|\frac{1}{n}\boldsymbol{X}^{\top}\boldsymbol{X} - \boldsymbol{\Sigma}\|_{op} = \Theta(\sqrt{d/n}), w.h.p.$$

Beyond textbook level: deterministic equivalence (Cheng and Montanari, 2024)

$$\mathrm{Tr}\!\left(\boldsymbol{X}^{\!\top} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \boldsymbol{\lambda})^{-1} \right) \sim \mathrm{Tr}\!\left(\boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_* \boldsymbol{I})^{-1} \right).$$

- \sim can be **asymptotic** or **non-asymptotic** at the rate of $\mathcal{O}(1/\sqrt{n})$.
- λ_* is the non-negative solution to the self-consistent equation $n \frac{\lambda}{\lambda_+} = \text{Tr}(\Sigma(\Sigma + \lambda_* I_d)^{-1}).$

Theorem (Deterministic equivalence

For sub-Gaussian data, assume Σ is well-behaved, w.h.p.

$$\underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}} \sim \mathsf{B}_{\mathrm{R},\lambda}^{\mathrm{LS}} := \frac{\lambda_*^2 \langle \boldsymbol{\beta}_*, \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I}_d)^{-2} \boldsymbol{\beta}_* \rangle}{1 - n^{-1} \mathrm{tr} (\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I}_d)^{-2})}$$

$$\underbrace{\operatorname{tr}(\boldsymbol{\Sigma} \boldsymbol{\mathsf{Cov}}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathrm{R},\lambda}^{\mathrm{LS}}} \sim \boldsymbol{\mathsf{V}}_{\mathrm{R},\lambda}^{\mathrm{LS}} := \frac{\sigma^{2} \mathrm{tr}(\boldsymbol{\Sigma}^{2}(\boldsymbol{\Sigma} + \boldsymbol{\lambda}_{*}\boldsymbol{\boldsymbol{I}}_{d})^{-2})}{n - \mathrm{tr}(\boldsymbol{\Sigma}^{2}(\boldsymbol{\Sigma} + \boldsymbol{\lambda}_{*}\boldsymbol{\boldsymbol{I}}_{d})^{-2})}$$

Beyond textbook level: deterministic equivalence (Cheng and Montanari, 2024)

$$\mathrm{Tr}\!\left(\boldsymbol{X}^{\!\top} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \boldsymbol{\lambda})^{-1} \right) \sim \mathrm{Tr}\!\left(\boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_* \boldsymbol{I})^{-1} \right).$$

- \sim can be **asymptotic** or **non-asymptotic** at the rate of $\mathcal{O}(1/\sqrt{n})$.
- λ_* is the non-negative solution to the self-consistent equation $n \frac{\lambda}{\lambda_-} = \text{Tr}(\Sigma(\Sigma + \lambda_* I_d)^{-1}).$

Theorem (Deterministic equivalence (Misiakiewicz and Saeed, 2024)

For sub-Gaussian data, assume Σ is well-behaved, w.h.p.

$$\underbrace{\frac{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\boldsymbol{\hat{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}}} \sim \mathtt{B}_{\mathtt{R},\lambda}^{\mathrm{LS}} := \frac{\lambda_*^2 \big\langle \boldsymbol{\beta}_*, \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I}_{\boldsymbol{d}})^{-2} \boldsymbol{\beta}_* \big\rangle}{1 - n^{-1} \mathrm{tr} (\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I}_{\boldsymbol{d}})^{-2})}$$

$$\underbrace{ \frac{ \operatorname{tr}(\boldsymbol{\Sigma} \boldsymbol{\mathsf{Cov}}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}{:=\mathcal{V}_{\mathbb{R},\lambda}^{\mathsf{LS}}} \sim \boldsymbol{\mathsf{V}}_{\mathtt{R},\lambda}^{\mathsf{LS}} := \ \frac{\sigma^2 \mathrm{tr}(\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_* \boldsymbol{I}_d)^{-2})}{n - \mathrm{tr}(\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_* \boldsymbol{I}_d)^{-2})} \,.$$

Proof of sketch on bias

$$\mathcal{B}_{\mathcal{N},\lambda}^{LS} = \text{Tr}\Big(\boldsymbol{\beta}_{*} \boldsymbol{\beta}_{*}^{\!\top} \boldsymbol{X}^{\!\top} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \lambda)^{-1} \Big) - \lambda \text{Tr}\Big(\boldsymbol{\beta}_{*} \boldsymbol{\beta}_{*}^{\!\top} \boldsymbol{X}^{\!\top} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \lambda)^{-2} \Big)$$

o first term

$$ext{Tr} \Big(oldsymbol{A} oldsymbol{X}^ op oldsymbol{X} (oldsymbol{X}^ op oldsymbol{X} + \lambda)^{-1} \Big) \sim ext{Tr} ig(oldsymbol{A} oldsymbol{\Sigma} (oldsymbol{\Sigma} + \lambda_*)^{-1} ig)$$

o second term

$$\lambda \operatorname{tr} \left(\beta_* \beta_*^{\top} \mathbf{X}^{\top} \mathbf{X} (\mathbf{X}^{\top} \mathbf{X} + \lambda)^{-2} \right) \sim \lambda \cdot \frac{\operatorname{Tr} \left(\mathbf{A} \Sigma^2 (\Sigma + \lambda_* \mathbf{I})^{-2} \right)}{n - \operatorname{Tr} (\Sigma^2 (\Sigma + \lambda_* \mathbf{I})^{-2})}$$

$$\leq \operatorname{Tr} \left(\beta_* \beta_*^{\top} \Sigma (\Sigma + \lambda_* \mathbf{I})^{-1} \right) - \operatorname{Tr} \left(\beta_* \beta_*^{\top} \Sigma^2 (\Sigma + \lambda_* \mathbf{I})^{-2} \right)$$

$$\leq \left(1 - \frac{1}{C} \right) \operatorname{Tr} \left(\beta_* \beta_*^{\top} \Sigma (\Sigma + \lambda_*)^{-1} \right)$$

Proof of sketch on bias

$$\mathcal{B}_{\mathcal{N},\lambda}^{\mathrm{LS}} = \mathrm{Tr}\Big(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda)^{-1} \Big) - \lambda \mathrm{Tr}\Big(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda)^{-2} \Big)$$
 o first term

$$\operatorname{Tr}\!\left(\!oldsymbol{A}oldsymbol{X}^{\! op}oldsymbol{X}(oldsymbol{X}^{\! op}oldsymbol{X}+\lambda)^{-1}
ight)\sim\operatorname{Tr}\!\left(oldsymbol{A}oldsymbol{\Sigma}(oldsymbol{\Sigma}+\lambda_*)^{-1}
ight)$$

second term

$$\lambda \operatorname{tr} \left(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda)^{-2} \right) \sim \lambda \cdot \frac{\operatorname{Tr} \left(\boldsymbol{A} \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2} \right)}{n - \operatorname{Tr} (\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2})}$$

$$\leq \operatorname{Tr} \left(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-1} \right) - \operatorname{Tr} \left(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2} \right)$$

$$\leq \left(1 - \frac{1}{C} \right) \operatorname{Tr} \left(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_*)^{-1} \right)$$

Proof of sketch on bias

$$\mathcal{B}_{\mathcal{N},\lambda}^{\texttt{LS}} = \texttt{Tr}\Big(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda)^{-1} \Big) - \lambda \texttt{Tr}\Big(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda)^{-2} \Big)$$

o first term

$$ext{Tr} \Big(oldsymbol{A} oldsymbol{X}^ op oldsymbol{X} (oldsymbol{X}^ op oldsymbol{X} + \lambda)^{-1} \Big) \sim ext{Tr} \Big(oldsymbol{A} oldsymbol{\Sigma} (oldsymbol{\Sigma} + \lambda_*)^{-1} \Big)$$

o second term

$$\lambda \operatorname{tr} \left(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda)^{-2} \right) \sim \lambda \cdot \frac{\operatorname{Tr} \left(\boldsymbol{A} \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2} \right)}{n - \operatorname{Tr} (\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2})}$$

$$\leq \operatorname{Tr} \left(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-1} \right) - \operatorname{Tr} \left(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2} \right)$$

$$\leq \left(1 - \frac{1}{C} \right) \operatorname{Tr} \left(\boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_*)^{-1} \right)$$

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer: $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$; only train the second layer

infinite many features $f_{m{a}}(m{x}) = \int_{\mathcal{W}} m{a}(m{w}) \phi(m{x},m{w}) \mathrm{d}\mu(m{w})$

$$\mathcal{F}_{p,\mu} := \{f_a : \|\mathbf{a}\|_{L^p(\mu)} < \infty\}, \quad \|f\|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_a} \|\mathbf{a}\|_{L^p(\mu)}$$

- RFMs \equiv kernel methods by taking p = 2 using Representer theorem
- RFMs $\not\equiv$ kernel methods if p < 2
- function space: $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$ if $p \ge q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu} \,, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- o largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer: $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$; only train the second layer infinite many features $f_a(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$

$$\mathcal{F}_{p,\mu} := \{f_{a} : \|a\|_{L^{p}(\mu)} < \infty\}, \quad \|f\|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_{a}} \|a\|_{L^{p}(\mu)}$$

- RFMs \equiv kernel methods by taking p = 2 using Representer theorem
- RFMs $\not\equiv$ kernel methods if p < 2
- function space: $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$ if $p \ge q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu}, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- o largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer: $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$; only train the second layer infinite many features $f_a(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$

$$\mathcal{F}_{p,\mu} := \{f_{\mathsf{a}} : \| \mathsf{a} \|_{L^p(\mu)} < \infty \}, \quad \| f \|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_{\mathsf{a}}} \| \mathsf{a} \|_{L^p(\mu)}$$

- RFMs \equiv kernel methods by taking p = 2 using Representer theorem
- RFMs $\not\equiv$ kernel methods if p < 2
- function space: $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$ if $p \ge q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu}, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- o largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer: $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$; only train the second layer infinite many features $f_a(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$

$$\mathcal{F}_{p,\mu} := \{f_{a} : \|a\|_{L^{p}(\mu)} < \infty\}, \quad \|f\|_{\mathcal{F}_{p,\mu}} := \inf_{f=f_{a}} \|a\|_{L^{p}(\mu)}$$

- RFMs \equiv kernel methods by taking p = 2 using Representer theorem
- RFMs $\not\equiv$ kernel methods if p < 2
- function space: $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$ if $p \geq q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu} \,, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- o largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer: $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$; only train the second layer infinite many features $f_a(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$

$$\mathcal{F}_{p,\mu} := \{f_{\mathsf{a}} : \| \mathsf{a} \|_{L^p(\mu)} < \infty \}, \quad \| f \|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_{\mathsf{a}}} \| \mathsf{a} \|_{L^p(\mu)}$$

- RFMs \equiv kernel methods by taking p = 2 using Representer theorem
- RFMs $\not\equiv$ kernel methods if p < 2
- function space: $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$ if $p \ge q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu} , \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer: $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$; only train the second layer

infinite many features $f_{a}(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$

$$\mathcal{F}_{p,\mu} := \{ f_{\mathbf{a}} : \|\mathbf{a}\|_{L^p(\mu)} < \infty \}, \quad \|f\|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_{\mathbf{a}}} \|\mathbf{a}\|_{L^p(\mu)}$$

- RFMs \equiv kernel methods by taking p = 2 using Representer theorem
- RFMs $\not\equiv$ kernel methods if p < 2
- function space: $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$ if $p \ge q$

$$\mathcal{B} = \bigcup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{\rho,\mu} \,, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{\rho,\mu}}$$

- largest
- o data-adaptive

Consider the following function space

$$\mathcal{F} = \{ \sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathcal{W} \} \cup \{ 0 \} \cup \{ -\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathbb{S}_1^{d-1} \text{ with the } \ell_1 \text{ ball} \}$$

• the convex hull of \mathcal{F} is

$$\overline{\mathtt{conv}}\mathcal{F} = \left\{ \sum_{i=1}^{m} \alpha_i f_i \middle| f_i \in \mathcal{F}, \sum_{i=1}^{m} \alpha_i = 1, \alpha_i \geqslant 0, m \in \mathbb{N} \right\}$$

convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

$$\log \mathcal{N}_2(\mathcal{G}_1, \epsilon) \leqslant \log \mathcal{N}_2(\overline{\mathcal{F}}, \epsilon, \mu) \leqslant C\left(\frac{1}{\epsilon}\right)^{\frac{2d}{d+2}}$$

$$C := \underbrace{D_k}_{=\Theta(d)} \left[\underbrace{C_k}_{=\Theta(1)} (2^{d+1} + 1)^{\frac{1}{d}} \right]^{\frac{2d}{d+2}} \le 10^7 d \quad \text{if } d > 5$$

Consider the following function space

$$\mathcal{F} = \{\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathcal{W}\} \cup \{0\} \cup \{-\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathbb{S}_1^{d-1} \text{ with the } \ell_1 \text{ ball}\}$$

ullet the convex hull of ${\mathcal F}$ is

$$\overline{\operatorname{conv}}\mathcal{F} = \left\{ \sum_{i=1}^{m} \alpha_{i} f_{i} \middle| f_{i} \in \mathcal{F}, \sum_{i=1}^{m} \alpha_{i} = 1, \alpha_{i} \geqslant 0, m \in \mathbb{N} \right\}.$$

convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

og
$$N_2(\mathcal{G}_1, \epsilon) \leqslant \log N_2(\overline{\operatorname{conv}}\mathcal{F}, \epsilon, \mu) \leqslant C\left(\frac{1}{\epsilon}\right)^{\frac{2d}{d+2}}$$
.

$$C := \underbrace{D_k \left[\underbrace{C_k}_{=\Theta(d)} (2^{d+1} + 1)^{\frac{1}{d}} \right]^{\frac{2d}{d+2}}}_{=\Theta(d)} \le 10^7 d \text{ if } d > 5$$

Consider the following function space

$$\mathcal{F} = \{\sigma(\langle \widetilde{\textit{\textbf{w}}}, \cdot \rangle) : \widetilde{\textit{\textbf{w}}} \in \mathcal{W}\} \cup \{0\} \cup \{-\sigma(\langle \widetilde{\textit{\textbf{w}}}, \cdot \rangle) : \widetilde{\textit{\textbf{w}}} \in \mathbb{S}_1^{d-1} \text{ with the } \ell_1 \text{ ball}\}$$

 \bullet the convex hull of \mathcal{F} is

$$\overline{\operatorname{conv}}\mathcal{F} = \left\{ \sum_{i=1}^{m} \alpha_{i} f_{i} \middle| f_{i} \in \mathcal{F}, \sum_{i=1}^{m} \alpha_{i} = 1, \alpha_{i} \geqslant 0, m \in \mathbb{N} \right\}.$$

• convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

$$\log \mathcal{N}_2(\mathcal{G}_1, \epsilon) \leqslant \log \mathcal{N}_2(\overline{\operatorname{conv}}\mathcal{F}, \epsilon, \mu) \leqslant \frac{C}{\epsilon} \left(\frac{1}{\epsilon}\right)^{\frac{2d}{d+2}}.$$

$$C := \underbrace{D_k}_{=\Theta(d)} \left[\underbrace{C_k}_{=\Theta(1)} (2^{d+1} + 1)^{\frac{1}{d}} \right]^{\frac{2d}{d+2}} \le 10^7 d \quad \text{if } d > 5$$

• Consider the following function space

$$\mathcal{F} = \{\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathcal{W}\} \cup \{0\} \cup \{-\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathbb{S}_1^{d-1} \text{ with the } \ell_1 \text{ ball}\}$$

ullet the convex hull of ${\mathcal F}$ is

$$\overline{\operatorname{conv}}\mathcal{F} = \left\{ \sum_{i=1}^{m} \alpha_{i} f_{i} \middle| f_{i} \in \mathcal{F}, \sum_{i=1}^{m} \alpha_{i} = 1, \alpha_{i} \geqslant 0, m \in \mathbb{N} \right\}.$$

• convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

$$\log \mathcal{N}_2(\mathcal{G}_1, \epsilon) \leqslant \log \mathcal{N}_2(\overline{\operatorname{conv}}\mathcal{F}, \epsilon, \mu) \leqslant \frac{C}{\epsilon} \left(\frac{1}{\epsilon}\right)^{\frac{2d}{d+2}}.$$

$$C := \underbrace{D_k}_{=\Theta(d)} \left[\underbrace{C_k}_{\Theta(1)} (2^{d+1} + 1)^{\frac{1}{d}} \right]^{\frac{2d}{d+2}} \le 10^7 d \quad \text{if } d > 5$$