# Be aware of model capacity when talking about generalization in machine learning

## Fanghui Liu

fanghui.liu@warwick.ac.uk

Department of Computer Science, University of Warwick, UK Centre for Discrete Mathematics and its Applications (DIMAP), Warwick









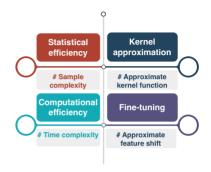




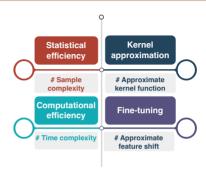
- ☐ Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML



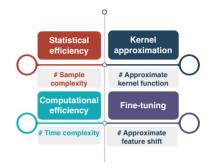
- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML



- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize **learning efficiency** in theory
- contribute to practice



- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize **learning efficiency** in theory
- contribute to practice

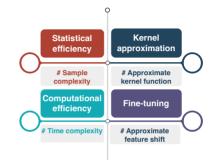


## Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in **high dimensions** that can be a **curse**!

— David Donoho, 2000. (Richard E. Bellman, 1957)

- Research interests
- Foundations of machine learning (ML)
- Theory-grounded efficient algorithm design
- Trustworthy ML
- Research goal
- characterize **learning efficiency** in theory
- contribute to practice



# Learning efficiency (Curse of Dimensionality, CoD)

Machine learning works in **high dimensions** that can be a **curse**!

— David Donoho, 2000. (Richard E. Bellman, 1957)

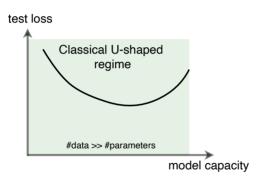


# In the era of machine learning

Prefer more data and larger model to obtain better performance...

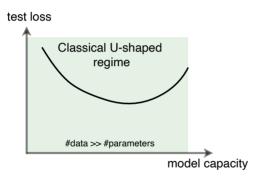


## ML textbooks: Larger models tend to overfit!

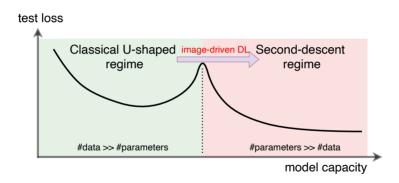


#### ML textbooks: Larger models tend to overfit!

Practice of deep learning: bigger models perform better!



#### Practice of deep learning: bigger models perform better!



Proposed explanation: double descent (Belkin et al., 2019)

## Learning paradigm in the past twenty years

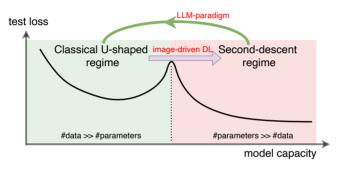


Figure 1: Paradigm among test loss, data, and model capacity.

Scaling law (Kaplan et al., 2020) in the era of LLMs test loss = A  $\times$  Model Size<sup>-a</sup> + B  $\times$  Data Size<sup>-b</sup> + C

## Learning paradigm in the past twenty years

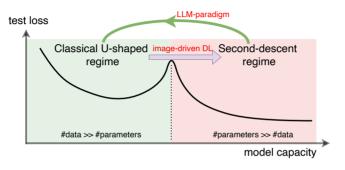


Figure 1: Paradigm among test loss, data, and model capacity.

# Scaling law (Kaplan et al., 2020) in the era of LLMs test loss = A $\times$ Model Size<sup>-a</sup> + B $\times$ Data Size<sup>-b</sup> + C

#### Too many learning curves...

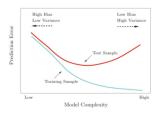
- U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
- double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
- scaling law (Kaplan et al., 2020; Paquette et al., 2024)

#### Too many learning curves...

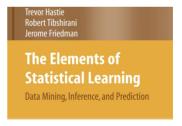
- U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
- double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
- scaling law (Kaplan et al., 2020; Paquette et al., 2024)

#### Bias-variance decomposition

Test error =  $Bias^2 + Variance$ 



(Hastie et al., 2009, Figure 2.11)



#### Too many learning curves...

- U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
- double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
- scaling law (Kaplan et al., 2020; Paquette et al., 2024)

#### Bias-variance decomposition

Test error =  $Bias^2 + Variance$ 

#### "Remove bias-variance trade-offs from ML textbooks"

Trade-off is a misnomer, by Geman et al. (1992); Neal (2019); Wilson (2025).

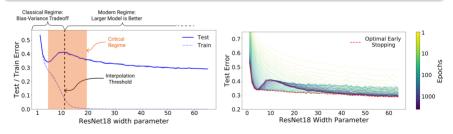
I can define model capacity at random and see whatever curve I want to see.

— Ben Recht, 2025

## Too many learning curves...

- U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
- double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
- scaling law (Kaplan et al., 2020; Paquette et al., 2024)

## Double descent can disappear for the same architecture!



(a) Results on ResNet18 (Nakkiran et al., 2019) (b) Optimal early stopping (Nakkiran et al., 2019).

## (Bartlett, 1998)

#### (Bartlett, 1998)

- Theoretical studies (Neyshabur et al., 2015; Savarese et al., 2019)
- Min-norm solution (Hastie et al., 2022)
- Applications: neural networks pruning (Molchanov et al., 2017), lottery ticket hypothesis (Frankle and Carbin, 2019)

## (Bartlett, 1998)

"The size of the weights is more important than the size of the network!"

- Theoretical studies (Neyshabur et al., 2015; Savarese et al., 2019)
- Min-norm solution (Hastie et al., 2022)
- Applications: neural networks pruning (Molchanov et al., 2017), lottery ticket hypothesis (Frankle and Carbin, 2019)

How these learning curves behave under a more suitable model capacity?

### (Bartlett, 1998)

"The size of the weights is more important than the size of the network!"

- Theoretical studies (Neyshabur et al., 2015; Savarese et al., 2019)
- Min-norm solution (Hastie et al., 2022)
- Applications: neural networks pruning (Molchanov et al., 2017), lottery ticket hypothesis (Frankle and Carbin, 2019)

How these learning curves behave under a more suitable model capacity?

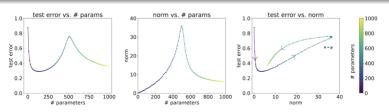


Figure 3: Stanford CS229 lecture notes (Ng and Ma, 2023, Figure 8.12).

#### (Bartlett, 1998)

- ☐ How to **precisely** characterize the relationship under norm-based model capacity?
- $\bullet$  Reshape bias-variance trade-offs, double descent, scaling law under  $\ell_2$  norm-based capacity!
- Yichen Wang, Yudong Chen, Lorenzo Rosasco, Fanghui Liu. Re-examining double descent and scaling laws under norm-based capacity via deterministic equivalence.
   2025. arXiv

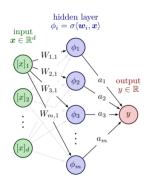
#### (Bartlett, 1998)

- ☐ How to **precisely** characterize the relationship under norm-based model capacity?
- ullet Reshape bias-variance trade-offs, double descent, scaling law under  $\ell_2$  norm-based capacity!
- Yichen Wang, Yudong Chen, Lorenzo Rosasco, Fanghui Liu. Re-examining double descent and scaling laws under norm-based capacity via deterministic equivalence.
   2025. arXiv
- What is the induced function space and statistical/computational efficiency under norm-based capacity?

#### (Bartlett, 1998)

- ☐ How to **precisely** characterize the relationship under norm-based model capacity?
- $\bullet$  Reshape bias-variance trade-offs, double descent, scaling law under  $\ell_2$  norm-based capacity!
- Yichen Wang, Yudong Chen, Lorenzo Rosasco, Fanghui Liu. Re-examining double descent and scaling laws under norm-based capacity via deterministic equivalence.
   2025. arXiv
- What is the induced function space and statistical/computational efficiency under norm-based capacity?
- Which function class can be **efficiently** learned by neural networks?
- Fanghui Liu, Leello Dadi, and Volkan Cevher. Learning with norm constrained, over-parameterised, two-layer neural networks. JMLR 2024.

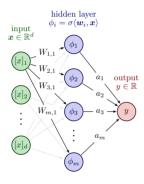
## Background: Random features model, two-layer neural networks



$$f_m(\mathbf{x}; \boldsymbol{\theta}) = \sum_{i=1}^m \mathbf{a}_i \phi(\mathbf{x}, \mathbf{w}_i), \quad \boldsymbol{\theta} := \{(\mathbf{a}_i, \mathbf{w}_i)\}_{i=1}^m$$

- $\phi: \mathcal{X} \times \mathcal{W} \to \mathbb{R}$ , e.g., ReLU:  $\phi(\mathbf{x}, \mathbf{w}) = \max(\langle \mathbf{x}, \mathbf{w} \rangle, 0)$
- and Recht (2007):  $\circ \{\mathbf{w}_i\}_{i=1}^{m} \stackrel{iid}{\sim} \mu \text{ for a given } \mu \in \mathcal{P}(\mathcal{W})$

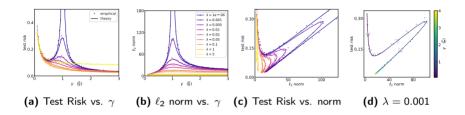
## Background: Random features model, two-layer neural networks



$$f_m(\mathbf{x}; \boldsymbol{\theta}) = \sum_{i=1}^m \mathbf{a}_i \phi(\mathbf{x}, \mathbf{w}_i), \quad \boldsymbol{\theta} := \{(\mathbf{a}_i, \mathbf{w}_i)\}_{i=1}^m$$

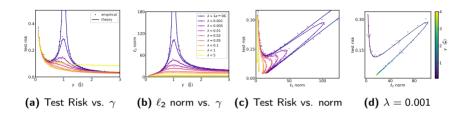
- $\phi: \mathcal{X} \times \mathcal{W} \to \mathbb{R}$ , e.g., ReLU:  $\phi(\mathbf{x}, \mathbf{w}) = \max(\langle \mathbf{x}, \mathbf{w} \rangle, 0)$
- Random features models (RFMs) Rahimi and Recht (2007):
  - $\circ \ \{ {\it w}_i \}_{i=1}^m \stackrel{\it iid}{\sim} \mu \ {\rm for \ a \ given} \ \mu \in \mathcal{P}(\mathcal{W})$
  - $\circ$  only train the second layer





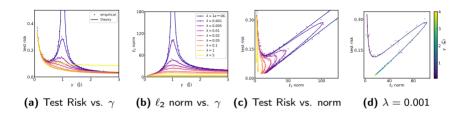
- $\gamma := p/n$ , p : model size (width), n : data size
- Phase transition exists but double descent does not exist
- Reshape scaling-law:
   test loss = A × Data Size<sup>-a</sup> + B × Model Size<sup>-b</sup> + C with a, b > 0
   test loss = A × Data Size<sup>-a</sup> × Norm Capacity<sup>-b</sup> with a > 0 and b ∈ ℝ
- Over-parameterization is still better than under-parameterization





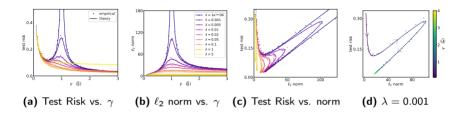
- $\gamma := p/n$ , p : model size (width), n : data size
- Phase transition exists but double descent does not exist
- Reshape scaling-law:
   test loss = A × Data Size<sup>-a</sup> + B × Model Size<sup>-b</sup> + C with a, b > 0
   test loss = A × Data Size<sup>-a</sup> × Norm Capacity<sup>-b</sup> with a > 0 and b ∈ R
- Over-parameterization is still better than under-parameterization





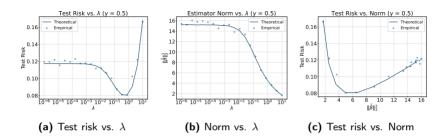
- $\gamma := p/n$ , p : model size (width), n : data size
- Phase transition exists but double descent does not exist
- Reshape scaling-law:
   test loss = A × Data Size<sup>-a</sup> + B × Model Size<sup>-b</sup> + C with a, b > 0
   test loss = A × Data Size<sup>-a</sup> × Norm Capacity<sup>-b</sup> with a > 0 and b ∈ ℝ
- Over-parameterization is still better than under-parameterization



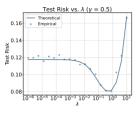


- $\gamma := p/n$ , p : model size (width), n : data size
- Phase transition exists but double descent does not exist
- Reshape scaling-law:
   test loss = A × Data Size<sup>-a</sup> + B × Model Size<sup>-b</sup> + C with a, b > 0
   test loss = A × Data Size<sup>-a</sup> × Norm Capacity<sup>-b</sup> with a > 0 and b ∈ ℝ
- Over-parameterization is still **better than** under-parameterization

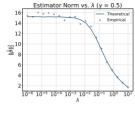
# Precise analysis: L-curve (Hansen, 1992)



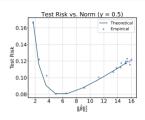
# Precise analysis: L-curve (Hansen, 1992)



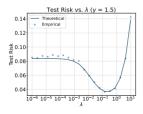
(a) Test risk vs.  $\lambda$ 



**(b)** Norm vs.  $\lambda$ 



(c) Test risk vs. Norm



Test Risk vs. Norm (γ = 1.5)

0.14

0.12

0.02

0.00

0.00

0.04

0.5 10 15 20 25 30 35 40

(d) Test risk vs.  $\lambda$ 

(e) Norm vs.  $\lambda$ 

(f) Test risk vs. Norm

- n i.i.d. samples  $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$  with  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $y_i \in \mathbb{R}$
- $y = \langle \boldsymbol{\beta}_*, \boldsymbol{x} \rangle + \varepsilon$ ,  $\mathbb{E}(\varepsilon) = 0$  and  $\mathbb{V}(\varepsilon) = \sigma^2$ , covariance matrix  $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- ridge regression:  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

Target: precise analysis

The expected test risk  $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_*\|_{\Sigma}^2$  vs. the norm  $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}}\|_2^2$ 

- n i.i.d. samples  $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$  with  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $y_i \in \mathbb{R}$
- $y = \langle \boldsymbol{\beta}_*, \boldsymbol{x} \rangle + \varepsilon$ ,  $\mathbb{E}(\varepsilon) = 0$  and  $\mathbb{V}(\varepsilon) = \sigma^2$ , covariance matrix  $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- ridge regression:  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

## Target: precise analysis

The expected test risk  $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_*\|_{\Sigma}^2$  vs. the norm  $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}}\|_2^2$ 

- n i.i.d. samples  $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$  with  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $y_i \in \mathbb{R}$
- $y = \langle \boldsymbol{\beta}_*, \boldsymbol{x} \rangle + \varepsilon$ ,  $\mathbb{E}(\varepsilon) = 0$  and  $\mathbb{V}(\varepsilon) = \sigma^2$ , covariance matrix  $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- ridge regression:  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

## Target: precise analysis

The expected test risk  $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_*\|_{\Sigma}^2$  vs. the norm  $\mathbb{E}_{\varepsilon} \|\hat{\boldsymbol{\beta}}\|_2^2$ 

☐ Deterministic equivalence (Cheng and Montanari, 2024; Misiakiewicz and Saeed, 2024): law of large samples/dimensions in random matrix theory

The empirical spectral measure converges to a deterministic limit.

- n i.i.d. samples  $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$  with  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $y_i \in \mathbb{R}$
- $y = \langle \boldsymbol{\beta}_*, \boldsymbol{x} \rangle + \varepsilon$ ,  $\mathbb{E}(\varepsilon) = 0$  and  $\mathbb{V}(\varepsilon) = \sigma^2$ , covariance matrix  $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- ridge regression:  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$

### Target: precise analysis

The expected test risk  $\mathbb{E}_{\varepsilon}\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_*\|_{\boldsymbol{\Sigma}}^2$  vs. the norm  $\mathbb{E}_{\varepsilon}\|\hat{\boldsymbol{\beta}}\|_2^2$ 

Deterministic equivalence (Cheng and Montanari, 2024; Misiakiewicz and Saeed, 2024): law of large samples/dimensions in random matrix theory

$$\operatorname{Tr}\!\left( oldsymbol{X}^{\! op} oldsymbol{X} (oldsymbol{X}^{\! op} oldsymbol{X} + \lambda)^{-1} 
ight) \sim \operatorname{Tr}\!\left( oldsymbol{\Sigma} (oldsymbol{\Sigma} + \lambda_*)^{-1} 
ight), w.h.p.$$

- ullet  $\sim$  can be **asymptotic** or **non-asymptotic** at the rate of  $\mathcal{O}(1/\sqrt{n})$ .
- $\lambda_*$  is the non-negative solution to the self-consistent equation  $n \frac{\lambda}{\lambda_-} = \text{Tr}(\Sigma(\Sigma + \lambda_*)^{-1}).$

#### Our results

## Theorem (Deterministic equivalence of estimator's norm)

We have a bias-variance decomposition  $\mathbb{E}_{\varepsilon} \|\hat{\beta}\|_2^2 = \mathcal{B}_{\mathcal{N},\lambda} + \mathcal{V}_{\mathcal{N},\lambda}$ .

For well-behaved data, we have

$$\mathsf{B}_{\mathsf{N},\lambda} := \left\langle \boldsymbol{\beta}_*, \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_*)^{-2} \boldsymbol{\beta}_* \right\rangle + \frac{\mathsf{Tr}(\boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_*)^{-2})}{n} \; \frac{\lambda_*^2 \langle \boldsymbol{\beta}_*, \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_*)^{-2} \boldsymbol{\beta}_* \rangle}{1 - \frac{1}{n} \, \mathsf{Tr}(\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_*)^{-2})}$$

$$\mathsf{V}_{\mathsf{N},\lambda} := \frac{\sigma^2 \operatorname{\mathsf{Tr}}(\mathbf{\Sigma}(\mathbf{\Sigma} + \lambda_*)^{-2})}{n - \operatorname{\mathsf{Tr}}(\mathbf{\Sigma}^2(\mathbf{\Sigma} + \lambda_*)^{-2})} \,.$$

Remark: Which model capacity suffices to characterize the test risk?

- Norm-based capacity: ✓ ©
- effective dimension-style  $\operatorname{Tr}(\Sigma(\Sigma+\lambda I)^{-1})$ :  $X \odot$

### Theorem (Deterministic equivalence of estimator's norm)

We have a bias-variance decomposition  $\mathbb{E}_{\varepsilon} \|\hat{\beta}\|_{2}^{2} = \mathcal{B}_{\mathcal{N},\lambda} + \mathcal{V}_{\mathcal{N},\lambda}$ . For well-behaved data, we have

$$\mathsf{B}_{\mathsf{N},\lambda} := \left\langle \beta_*, \Sigma^2 (\Sigma + \lambda_*)^{-2} \beta_* \right\rangle + \frac{\mathsf{Tr}(\Sigma (\Sigma + \lambda_*)^{-2})}{n} \frac{\lambda_*^2 \left\langle \beta_*, \Sigma (\Sigma + \lambda_*)^{-2} \beta_* \right\rangle}{1 - \frac{1}{n} \mathsf{Tr}(\Sigma^2 (\Sigma + \lambda_*)^{-2})} \;,$$

$$\mathsf{V}_{\mathsf{N},\lambda} := rac{\sigma^2 \, \mathsf{Tr}(\mathbf{\Sigma}(\mathbf{\Sigma} + \lambda_*)^{-2})}{n - \mathsf{Tr}(\mathbf{\Sigma}^2(\mathbf{\Sigma} + \lambda_*)^{-2})} \, .$$

Remark: Which model capacity suffices to characterize the test risk?

- Norm-based capacity: ✓ ©
- effective dimension-style  $\operatorname{Tr}(\mathbf{\Sigma}(\mathbf{\Sigma}+\lambda I)^{-1})$ :  $\mathbf{X} \odot$

#### Our results

### Theorem (Deterministic equivalence of estimator's norm)

We have a bias-variance decomposition  $\mathbb{E}_{\varepsilon} \|\hat{\beta}\|_{2}^{2} = \mathcal{B}_{\mathcal{N},\lambda} + \mathcal{V}_{\mathcal{N},\lambda}$ . For well-behaved data, we have

$$\mathsf{B}_{\mathsf{N},\lambda} := \left\langle \beta_*, \Sigma^2 (\Sigma + \lambda_*)^{-2} \beta_* \right\rangle + \frac{\mathsf{Tr}(\Sigma(\Sigma + \lambda_*)^{-2})}{n} \frac{\lambda_*^2 \left\langle \beta_*, \Sigma(\Sigma + \lambda_*)^{-2} \beta_* \right\rangle}{1 - \frac{1}{n} \mathsf{Tr}(\Sigma^2(\Sigma + \lambda_*)^{-2})} \;,$$

$$\mathsf{V}_{\mathsf{N},\lambda} := rac{\sigma^2 \, \mathsf{Tr}(\mathbf{\Sigma}(\mathbf{\Sigma} + \lambda_*)^{-2})}{n - \mathsf{Tr}(\mathbf{\Sigma}^2(\mathbf{\Sigma} + \lambda_*)^{-2})} \, .$$

Remark: Which model capacity suffices to characterize the test risk?

- Norm-based capacity: ✓ ⊙
- effective dimension-style  $\operatorname{Tr}(\Sigma(\Sigma + \lambda I)^{-1})$ : **X**  $\odot$

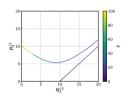
- $\square$  Test risk  $R_{\lambda}$  and norm  $N_{\lambda}$  formulates a cubic curve (complex but precise).
- min-norm interpolator ( $\lambda = 0$ ):

$$\mathsf{R}_0 = \left\{ \begin{array}{l} \mathsf{N}_0 - \|\boldsymbol{\beta}_*\|_2^2; \text{in under-parameterized regimes} \\ \sqrt{\left[\mathsf{N}_0 - (\|\boldsymbol{\beta}_*\|_2^2 - \sigma^2)\right]^2 + 4\|\boldsymbol{\beta}_*\|_2^2 \sigma^2} - \sigma^2 \,. \end{array} \right.$$

- optimal regularization  $\lambda = \frac{d\sigma^2}{\|\beta^*\|_2^2}$  (Wu and Xu,
  - 2020):  $R_{\lambda} = \|\beta_*\|_2^2 N_{\lambda}$
- $\lambda \to \infty$ :  $R_{\lambda} = (\|\beta_*\|_2 \sqrt{N_{\lambda}})^2$

- $\square$  Test risk  $R_{\lambda}$  and norm  $N_{\lambda}$  formulates a cubic curve (complex but precise).
- min-norm interpolator ( $\lambda = 0$ ):

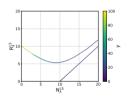
$$\mathsf{R}_0 = \left\{ \begin{array}{l} \mathsf{N}_0 - \|\boldsymbol{\beta}_*\|_2^2; \text{in under-parameterized regimes} \\ \sqrt{\left[\mathsf{N}_0 - (\|\boldsymbol{\beta}_*\|_2^2 - \sigma^2)\right]^2 + 4\|\boldsymbol{\beta}_*\|_2^2\sigma^2} - \sigma^2 \,. \end{array} \right.$$



- optimal regularization  $\lambda = \frac{d\sigma^2}{\|\beta^*\|_2^2}$  (Wu and Xu
- $\lambda \to \infty$ :  $R_{\lambda} = (\|\beta_*\|_2 \sqrt{N_{\lambda}})^2$

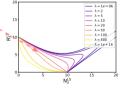
- $\square$  Test risk  $R_{\lambda}$  and norm  $N_{\lambda}$  formulates a cubic curve (complex but precise).
- min-norm interpolator ( $\lambda = 0$ ):

$$\mathsf{R}_0 = \left\{ \begin{array}{l} \mathsf{N}_0 - \|\boldsymbol{\beta}_*\|_2^2; \text{in under-parameterized regimes} \\ \sqrt{\left[\mathsf{N}_0 - (\|\boldsymbol{\beta}_*\|_2^2 - \sigma^2)\right]^2 + 4\|\boldsymbol{\beta}_*\|_2^2\sigma^2} - \sigma^2 \,. \end{array} \right.$$



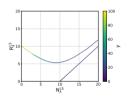
• optimal regularization  $\lambda = \frac{d\sigma^2}{\|\beta^*\|_2^2}$  (Wu and Xu, 2020):  $R_{\lambda} = \|\beta_*\|_2^2 - N_{\lambda}$ 



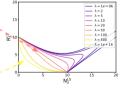


- $\square$  Test risk  $R_{\lambda}$  and norm  $N_{\lambda}$  formulates a cubic curve (complex but precise).
- min-norm interpolator ( $\lambda = 0$ ):

$$\mathsf{R}_0 = \left\{ \begin{array}{l} \mathsf{N}_0 - \|\boldsymbol{\beta}_*\|_2^2; \text{in under-parameterized regimes} \\ \sqrt{\left[\mathsf{N}_0 - (\|\boldsymbol{\beta}_*\|_2^2 - \sigma^2)\right]^2 + 4\|\boldsymbol{\beta}_*\|_2^2\sigma^2} - \sigma^2 \,. \end{array} \right.$$



- optimal regularization  $\lambda = \frac{d\sigma^2}{\|\beta^*\|_2^2}$  (Wu and Xu, 2020):  $R_{\lambda} = \|\beta_*\|_2^2 N_{\lambda}$
- $\lambda \to \infty$ :  $R_{\lambda} = (\|\beta_*\|_2 \sqrt{N_{\lambda}})^2$



# Precise analysis via deterministic equivalence

- ☐ Precisely describe the learning curve.
  - phase transitions, (non-)monotonicity, etc.
- ☐ Enables accurate comparison between estimators/algorithms.
  - Foundations of scaling law: data or parameter under the same budget, etc.

## Precise analysis via deterministic equivalence

- ☐ Precisely describe the learning curve.
  - phase transitions, (non-)monotonicity, etc.
- Enables accurate comparison between estimators/algorithms.
  - Foundations of scaling law: data or parameter under the same budget, etc.



**Table 1:** Complexity measures compared in the empirical study (Jiang et al., 2020), and their correlation with generalization.

| name                     | definition                                      | rank correlation |
|--------------------------|-------------------------------------------------|------------------|
| Parameter Frobenius norm | $\sum_{i=1}^{L} \  \boldsymbol{W}_i \ _F^2$     | 0.073            |
|                          | $\sum_{i=1}^L \  W_i - W_i^0 \ _{\mathrm{F}}^2$ |                  |
|                          |                                                 |                  |
|                          |                                                 |                  |
|                          |                                                 |                  |

**Table 1:** Complexity measures compared in the empirical study (Jiang et al., 2020), and their correlation with generalization.

| name                                 | definition                                                                                                                                                     | rank correlation |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Parameter Frobenius norm             | $\sum_{i=1}^{L} \  \mathbf{W}_i \ _F^2$                                                                                                                        | 0.073            |
| Frobenius distance to initialization | $rac{\sum_{i=1}^L \ oldsymbol{W}_i\ _F^2}{\sum_{i=1}^L \ oldsymbol{W}_i - oldsymbol{W}_i^0\ _{\mathrm{F}}^2}$                                                 | -0.263           |
| Spectral complexity                  | $\prod_{i=1}^{L} \  \boldsymbol{W}_{i} \  \left( \sum_{i=1}^{L} \frac{\  \boldsymbol{W}_{i} \ _{2,1}^{3/2}}{\  \boldsymbol{W}_{i} \ _{3}^{3/2}} \right)^{2/3}$ | -0.537           |
| Fisher-Rao                           | $\frac{(L+1)^2}{n} \sum_{i=1}^n \langle \mathbf{W}, \nabla_{\mathbf{W}} \ell(h_{\mathbf{W}}(\mathbf{x}_i), y_i) \rangle$                                       | 0.078            |
|                                      |                                                                                                                                                                |                  |

**Table 1:** Complexity measures compared in the empirical study (Jiang et al., 2020), and their correlation with generalization.

| name                                 | definition                                                                                                                                               | rank correlation |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Parameter Frobenius norm             | $\sum_{i=1}^{L} \  \mathbf{W}_i \ _F^2$                                                                                                                  | 0.073            |
| Frobenius distance to initialization | $rac{\sum_{i=1}^L \ oldsymbol{W}_i\ _F^2}{\sum_{i=1}^L \ oldsymbol{W}_i - oldsymbol{W}_i^{0}\ _{\mathrm{F}}^2}$                                         | -0.263           |
| Spectral complexity                  | $\prod_{i=1}^{L} \  \boldsymbol{W}_i \  \left( \sum_{i=1}^{L} \frac{\  \boldsymbol{W}_i \ _{2,1}^{3/2}}{\  \boldsymbol{W}_i \ _{3}^{3/2}} \right)^{2/3}$ | -0.537           |
| Fisher-Rao                           | $\frac{(L+1)^2}{n} \sum_{i=1}^n \langle \boldsymbol{W}, \nabla_{\boldsymbol{W}} \ell(h_{\boldsymbol{W}}(\boldsymbol{x}_i), y_i) \rangle$                 | 0.078            |
| Path-norm                            | $\sum_{(i_{m{0}},\ldots,i_{L})}\prod_{j=m{1}}^{L}\Big(m{W}_{i_{j},i_{j-m{1}}}\Big)^{m{2}}$                                                               | 0.373            |

**Table 1:** Complexity measures compared in the empirical study (Jiang et al., 2020), and their correlation with generalization.

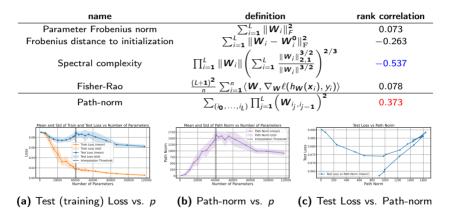
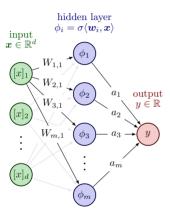
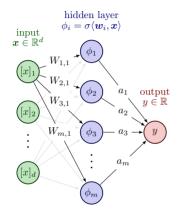


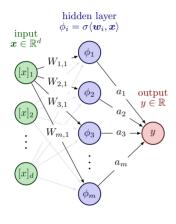
Figure 5: Experiments on two-layer neural networks.





 $\ell_1$ -path norm (Neyshabur et al., 2015)

$$\|oldsymbol{ heta}\|_{\mathcal{P}} := rac{1}{m} \sum_{k=1}^m |\mathsf{a}_k| \|oldsymbol{w}_k\|_1$$

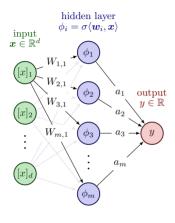


 $\ell_1$ -path norm (Neyshabur et al., 2015)

$$\|m{ heta}\|_{\mathcal{P}} := rac{1}{m} \sum_{k=1}^{m} |a_k| \|m{w}_k\|_1$$

 equivalent to Barron spaces B (Barron, 1993; E et al., 2021)

$$\mathcal{B} := \cup_{\mu \in \mathcal{P}(\mathcal{W})} \{ f_{\mathsf{a}} : \|\mathbf{a}\|_{L^{2}(\mu)} < \infty \}$$



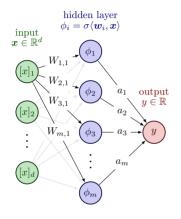
 $\ell_1$ -path norm (Neyshabur et al., 2015)

$$\|m{\theta}\|_{\mathcal{P}} := \frac{1}{m} \sum_{k=1}^{m} |a_k| \|m{w}_k\|_1$$

 equivalent to Barron spaces B (Barron, 1993; E et al., 2021)

$$\mathcal{B} := \cup_{\mu \in \mathcal{P}(\mathcal{W})} \{ f_{\mathsf{a}} : \| \mathsf{a} \|_{L^{2}(\mu)} < \infty \}$$

 Variation in only a few directions (Parhi and Nowak, 2022)



 $\ell_1$ -path norm (Neyshabur et al., 2015)

$$\|m{ heta}\|_{\mathcal{P}} := rac{1}{m} \sum_{k=1}^m |a_k| \|m{w}_k\|_1$$

 equivalent to Barron spaces B (Barron, 1993; E et al., 2021)

$$\mathcal{B} := \cup_{\mu \in \mathcal{P}(\mathcal{W})} \{ f_{\mathbf{a}} : \|\mathbf{a}\|_{L^{2}(\mu)} < \infty \}$$

 Variation in only a few directions (Parhi and Nowak, 2022)

Can neural networks identify this structure?





# Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$ )

To achieve  $\epsilon$ -excess risk.

- Kernel methods require  $\Omega(\epsilon^{-d})$  samples.
- Two-layer neural networks require  $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$  samples, smaller than  $\epsilon^{-2}$



## Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$ )

To achieve  $\epsilon$ -excess risk,

- Kernel methods require  $\Omega(\epsilon^{-d})$  samples.
- Two-layer neural networks require  $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$  samples. smaller than  $\epsilon^{-2}$



## Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$ )

To achieve  $\epsilon$ -excess risk,

- Kernel methods require  $\Omega(\epsilon^{-d})$  samples.
- Two-layer neural networks require  $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$  samples. smaller than  $\epsilon^{-2}$

No Curse of Dimensionality: NNs adapt to directional smoothness.



### Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$ )

To achieve  $\epsilon$ -excess risk,

- Kernel methods require  $\Omega(\epsilon^{-d})$  samples.
- Two-layer neural networks require  $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$  samples. smaller than  $\epsilon^{-2}$

No Curse of Dimensionality: NNs adapt to directional smoothness.

☐ Track sample complexity (via metric entropy) and dimension dependence





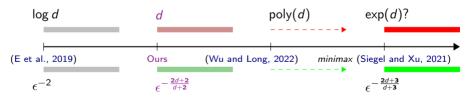
### Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$ )

To achieve  $\epsilon$ -excess risk,

- Kernel methods require  $\Omega(\epsilon^{-d})$  samples.
- Two-layer neural networks require  $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$  samples. smaller than  $\epsilon^{-2}$

No Curse of Dimensionality: NNs adapt to directional smoothness.

☐ Track sample complexity (via metric entropy) and dimension dependence





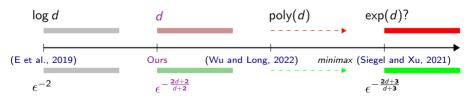
### Theorem (Informal, sample complexity of learning $f^* \in \mathcal{B}$ )

To achieve  $\epsilon$ -excess risk,

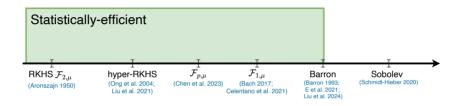
- Kernel methods require  $\Omega(\epsilon^{-d})$  samples.
- Two-layer neural networks require  $\Omega(\epsilon^{-\frac{2d+2}{d+2}})$  samples. smaller than  $\epsilon^{-2}$

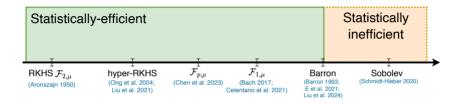
No Curse of Dimensionality: NNs adapt to directional smoothness.

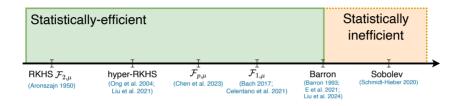
☐ Track sample complexity (via metric entropy) and dimension dependence



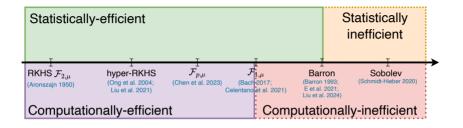
The "best" trade-off between  $\epsilon$  and d.

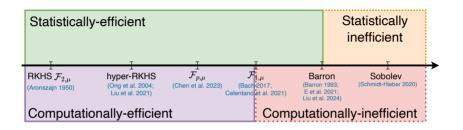






Optimization in Barron spaces is NP hard: curse of dimensionality! (Bach, 2017)







- ReLU neurons (Chen and Narayanan, 2023)
- Low-dimensional polynomials (Arous et al., 2021; Lee et al., 2024)

# Takeaway messages

#### Deep learning phenomena $\Rightarrow$ interesting mathematical problems

- ☐ Be aware of model capacity!
  - Reshape bias-variance trade-offs, double descent, scaling law under proper  $\ell_2$  norm-based capacity via deterministic equivalence.



#### Takeaway messages

#### Deep learning phenomena ⇒ interesting mathematical problems

- Be aware of model capacity!
  - Reshape bias-variance trade-offs, double descent, scaling law under proper \( \ell\_2 \)
    norm-based capacity via deterministic equivalence.



- Which function class can be efficiently learned by neural networks?
  - Neural networks can adapt to low-dimensional structure and avoid CoD!



#### Takeaway messages

#### $\textbf{Deep learning phenomena} \Rightarrow \textbf{interesting mathematical problems}$

- Be aware of model capacity!
  - Reshape bias-variance trade-offs, double descent, scaling law under proper  $\ell_2$  norm-based capacity via deterministic equivalence.



- Which function class can be efficiently learned by neural networks?
  - Neural networks can adapt to low-dimensional structure and avoid CoD!

### Theoretical advances ⇒ principled guidance in practical problems

- ☐ How does our theory contribute to practical fine-tuning problems?
  - One-step full gradient can be sufficient! [GitHub]

#### References

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on non-convex losses from high-dimensional inference. *Journal of Machine Learning Research*, 22(106):1–51, 2021.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research*, 18(1):629–681, 2017.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. *IEEE Transactions on Information theory*, 39(3): 930–945, 1993.

- Peter Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. *IEEE Transactions on Information Theory*, 44(2):525–536, 1998.
- Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the classical bias—variance trade-off. *the National Academy of Sciences*, 116(32):15849–15854, 2019.
- Hongrui Chen, Jihao Long, and Lei Wu. A duality framework for generalization analysis of random feature models and two-layer neural networks. *arXiv preprint arXiv:2305.05642*, 2023.
- Sitan Chen and Shyam Narayanan. A faster and simpler algorithm for learning shallow networks. *arXiv preprint arXiv:2307.12496*, 2023.
- Chen Cheng and Andrea Montanari. Dimension free ridge regression. *The Annals of Statistics*, 52(6):2879–2912, 2024.

- Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer neural networks. Communications in Mathematical Sciences, 17 (5):1407–1425, 2019.
- Weinan E, Chao Ma, and Lei Wu. The barron space and the flow-induced function spaces for neural network models. *Constructive Approximation*, pages 1–38, 2021.
- Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations*, 2019.
- Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma. *Neural computation*, 4(1):1–58, 1992.
- Per Christian Hansen. Analysis of discrete ill-posed problems by means of the l-curve. *SIAM Review*, 34(4):561–580, 1992.

- Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. *The elements of statistical learning: data mining, inference, and prediction*, volume 2. Springer, 2009.
- Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-dimensional ridgeless least squares interpolation. *Annals of Statistics*, 50(2):949–986, 2022.
- Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic generalization measures and where to find them. In *International Conference on Learning Representations*, 2020.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv preprint* arXiv:2001.08361, 2020.

- Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional polynomials with sgd near the information-theoretic limit. arXiv preprint arXiv:2406.01581, 2024.
- Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-norm interpolants and restricted lower isometry of kernels. In *Conference on Learning Theory*, pages 2683–2711, 2020.
- Theodor Misiakiewicz and Basil Saeed. A non-asymptotic theory of kernel ridge regression: deterministic equivalents, test error, and gcv estimator. arXiv preprint arXiv:2403.08938, 2024.
- Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural networks for resource efficient inference. In *International Conference on Learning Representations*, 2017.

#### References vi

- Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: Where bigger models and more data hurt. In *International Conference on Learning Representations*, 2019.
- Brady Neal. On the bias-variance tradeoff: Textbooks need an update. *arXiv* preprint arXiv:1912.08286, 2019.
- Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural networks. In *Conference on Learning Theory*, pages 1376–1401. PMLR, 2015.
- Andrew Ng and Tengyu Ma. CS229 lecture notes. 2023. URL https://cs229.stanford.edu/main\_notes.pdf.
- Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of compute-optimal neural scaling laws. *arXiv preprint arXiv:2405.15074*, 2024.

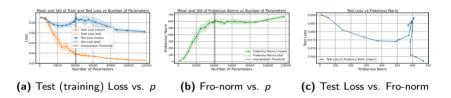
#### References vii

- Rahul Parhi and Robert D Nowak. Near-minimax optimal estimation with shallow ReLU neural networks. *IEEE Transactions on Information Theory*, 2022.
- Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In *Advances in Neural Information Processing Systems*, pages 1177–1184, 2007.
- Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded norm networks look in function space? In *Conference on Learning Theory*, pages 2667–2690. PMLR, 2019.
- Jonathan W Siegel and Jinchao Xu. Sharp bounds on the approximation rates, metric entropy, and *n*-widths of shallow neural networks. *arXiv* preprint *arXiv*:2101.12365, 2021.

#### References viii

- Aad W Van Der Vaart, Adrianus Willem van der Vaart, Aad van der Vaart, and Jon Wellner. *Weak convergence and empirical processes: with applications to statistics.* Springer Science & Business Media, 1996.
- Vladimir N. Vapnik. *The Nature of Statistical Learning Theory*. Springer, 1995.
- Andrew Gordon Wilson. Deep learning is not so mysterious or different. *arXiv* preprint arXiv:2503.02113, 2025.
- Denny Wu and Ji Xu. On the optimal weighted  $\ell_2$  regularization in overparameterized linear regression. In *Advances in Neural Information Processing Systems*, pages 10112–10123, 2020.
- Lei Wu and Jihao Long. A spectral-based analysis of the separation between two-layer neural networks and linear methods. *Journal of Machine Learning Research*, 119:1–34, 2022.

## Experimental results



**Figure 6:** Experiments on two-layer fully connected neural networks with noise level  $\eta=0.2$ . The **left** figure shows the relationship between test (training) loss and the number of the parameters p. The **middle** figure shows the relationship between the Frobenius norm and p. The **right** figure shows the relationship between the test loss and Fro-norm.

- $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mu$ ,  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $y_i \in \mathbb{R}$ , covariance matrix  $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- $y = \langle \beta_*, \mathbf{x} \rangle + \varepsilon$  with  $\mathbb{E}(\varepsilon) = 0$  and  $\mathbb{V}(\varepsilon) = \sigma^2$
- ridge regression:  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$
- ullet min- $\ell_2$ -norm interpolation:  $\hat{oldsymbol{eta}}_{\mathsf{min}} = \mathrm{argmin}_{oldsymbol{eta}} \|oldsymbol{eta}\|_2, \mathsf{s.t.}$   $oldsymbol{X}oldsymbol{eta} = oldsymbol{y}$
- expected test risk: bias-variance decomposition

$$\mathcal{R}^{\mathrm{LS}} := \mathbb{E}_{\varepsilon} \|\boldsymbol{\beta}_* - \hat{\boldsymbol{\beta}}\|_{\boldsymbol{\Sigma}}^2 = \underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}} + \underbrace{\mathrm{tr}(\boldsymbol{\Sigma}\mathrm{Cov}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}}}$$

• 
$$\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \lambda^2 \langle eta_*, (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{\Sigma} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} eta_* \rangle$$

• 
$$\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \sigma^2 \mathrm{Tr}(\boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-2})$$

\*Intuitive fact: for i.i.d. sub-Gaussian data X, we have

$$\frac{1}{n} \mathbf{X}^{\top} \mathbf{X} - \mathbf{\Sigma} \|_{op} = \Theta(\sqrt{d/n}), w.h.p.$$

- $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mu$ ,  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $y_i \in \mathbb{R}$ , covariance matrix  $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- $y = \langle \beta_*, \mathbf{x} \rangle + \varepsilon$  with  $\mathbb{E}(\varepsilon) = 0$  and  $\mathbb{V}(\varepsilon) = \sigma^2$
- ridge regression:  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$
- ullet min- $\ell_2$ -norm interpolation:  $\hat{eta}_{\mathsf{min}} = \mathrm{argmin}_{eta} \|oldsymbol{eta}\|_2, \mathsf{s.t.}$   $oldsymbol{X}eta = oldsymbol{y}$
- expected test risk: bias-variance decomposition

$$\mathcal{R}^{\mathrm{LS}} := \mathbb{E}_{\varepsilon} \|\boldsymbol{\beta}_* - \hat{\boldsymbol{\beta}}\|_{\boldsymbol{\Sigma}}^2 = \underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}} + \underbrace{\operatorname{tr}(\boldsymbol{\Sigma} \mathrm{Cov}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}}}.$$

- $\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \lambda^2 \langle eta_*, (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{\Sigma} (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} eta_* \rangle$
- $\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \sigma^2 \mathrm{Tr}(\boldsymbol{\Sigma} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-2})$
- \*Intuitive fact: for i.i.d. sub-Gaussian data X, we have

$$\|\frac{1}{n}\mathbf{X}^{\top}\mathbf{X} - \mathbf{\Sigma}\|_{op} = \Theta(\sqrt{d/n}), w.h.p.$$

- $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mu$ ,  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $y_i \in \mathbb{R}$ , covariance matrix  $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- $y = \langle \beta_*, \mathbf{x} \rangle + \varepsilon$  with  $\mathbb{E}(\varepsilon) = 0$  and  $\mathbb{V}(\varepsilon) = \sigma^2$
- ullet ridge regression:  $\hat{oldsymbol{eta}} = (oldsymbol{X}^{ op} oldsymbol{X} + \lambda oldsymbol{I})^{-1} oldsymbol{X}^{ op} oldsymbol{y}$
- ullet min- $\ell_2$ -norm interpolation:  $\hat{eta}_{\mathsf{min}} = \mathrm{argmin}_{eta} \|oldsymbol{eta}\|_2, \mathsf{s.t.}$   $oldsymbol{X}eta = oldsymbol{y}$
- expected test risk: bias-variance decomposition

$$\mathcal{R}^{\text{LS}} := \mathbb{E}_{\varepsilon} \|\boldsymbol{\beta}_* - \hat{\boldsymbol{\beta}}\|_{\boldsymbol{\Sigma}}^2 = \underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\text{LS}}} + \underbrace{\text{tr}(\boldsymbol{\Sigma} \text{Cov}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathcal{R},\lambda}^{\text{LS}}}.$$

- $\mathcal{B}_{\mathcal{R},\lambda}^{LS} = \lambda^2 \langle \boldsymbol{\beta}_*, (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Sigma} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\beta}_* \rangle$
- $\bullet \ \mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \sigma^2 \mathrm{Tr}(\boldsymbol{\Sigma} \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I})^{-2})$
- \*Intuitive fact: for i.i.d. sub-Gaussian data X, we have

$$\|rac{1}{n}oldsymbol{X}^{ op}oldsymbol{X}-oldsymbol{\Sigma}\|_{op}=\Theta(\sqrt{d/n})\,,$$
 w.h.p.

- $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \overset{i.i.d.}{\sim} \mu$ ,  $\boldsymbol{x}_i \in \mathbb{R}^d$ ,  $y_i \in \mathbb{R}$ , covariance matrix  $\boldsymbol{\Sigma} = \mathbb{E}[\boldsymbol{x}\boldsymbol{x}^\top]$
- $y = \langle \beta_*, \mathbf{x} \rangle + \varepsilon$  with  $\mathbb{E}(\varepsilon) = 0$  and  $\mathbb{V}(\varepsilon) = \sigma^2$
- ridge regression:  $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$
- ullet min- $\ell_2$ -norm interpolation:  $\hat{eta}_{\mathsf{min}} = \mathrm{argmin}_{eta} \|oldsymbol{eta}\|_2, \mathsf{s.t.}$   $oldsymbol{X}eta = oldsymbol{y}$
- expected test risk: bias-variance decomposition

$$\mathcal{R}^{\mathrm{LS}} := \mathbb{E}_{\varepsilon} \|\boldsymbol{\beta}_* - \hat{\boldsymbol{\beta}}\|_{\boldsymbol{\Sigma}}^2 = \underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}} + \underbrace{\operatorname{tr}(\boldsymbol{\Sigma} \mathrm{Cov}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}}}.$$

- $\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \lambda^2 \langle \boldsymbol{\beta}_*, (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Sigma} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\beta}_* \rangle$
- $\bullet \ \mathcal{V}_{\mathcal{R},\lambda}^{\mathrm{LS}} = \sigma^2 \mathrm{Tr} (\boldsymbol{\Sigma} \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda \boldsymbol{I})^{-2})$
- \*Intuitive fact: for i.i.d. sub-Gaussian data X, we have

$$\|\frac{1}{n}\boldsymbol{X}^{\top}\boldsymbol{X} - \boldsymbol{\Sigma}\|_{op} = \Theta(\sqrt{d/n}), w.h.p.$$

# Beyond textbook level: deterministic equivalence (Cheng and Montanari, 2024)

$$\mathrm{Tr}\!\left( \boldsymbol{X}^{\!\top} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \boldsymbol{\lambda})^{-1} \right) \sim \mathrm{Tr}\!\left( \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_* \boldsymbol{I})^{-1} \right).$$

- $\sim$  can be **asymptotic** or **non-asymptotic** at the rate of  $\mathcal{O}(1/\sqrt{n})$ .
- $\lambda_*$  is the non-negative solution to the self-consistent equation  $n \frac{\lambda}{\lambda_+} = \text{Tr}(\Sigma(\Sigma + \lambda_* I_d)^{-1}).$

#### Theorem (Deterministic equivalence

For sub-Gaussian data, assume  $\Sigma$  is well-behaved, w.h.p.

$$\underbrace{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\hat{\boldsymbol{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}} \sim \mathsf{B}_{\mathrm{R},\lambda}^{\mathrm{LS}} := \frac{\lambda_*^2 \langle \boldsymbol{\beta}_*, \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I}_d)^{-2} \boldsymbol{\beta}_* \rangle}{1 - n^{-1} \mathrm{tr} (\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I}_d)^{-2})}$$

$$\underbrace{\operatorname{tr}(\boldsymbol{\Sigma} \boldsymbol{\mathsf{Cov}}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}_{:=\mathcal{V}_{\mathrm{R},\lambda}^{\mathrm{LS}}} \sim \boldsymbol{\mathsf{V}}_{\mathrm{R},\lambda}^{\mathrm{LS}} := \frac{\sigma^{2} \mathrm{tr}(\boldsymbol{\Sigma}^{2}(\boldsymbol{\Sigma} + \boldsymbol{\lambda}_{*}\boldsymbol{\boldsymbol{I}}_{d})^{-2})}{n - \mathrm{tr}(\boldsymbol{\Sigma}^{2}(\boldsymbol{\Sigma} + \boldsymbol{\lambda}_{*}\boldsymbol{\boldsymbol{I}}_{d})^{-2})}$$

# Beyond textbook level: deterministic equivalence (Cheng and Montanari, 2024)

$$\mathrm{Tr}\!\left( \boldsymbol{X}^{\!\top} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \boldsymbol{\lambda})^{-1} \right) \sim \mathrm{Tr}\!\left( \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_* \boldsymbol{I})^{-1} \right).$$

- $\sim$  can be **asymptotic** or **non-asymptotic** at the rate of  $\mathcal{O}(1/\sqrt{n})$ .
- $\lambda_*$  is the non-negative solution to the self-consistent equation  $n \frac{\lambda}{\lambda_-} = \text{Tr}(\Sigma(\Sigma + \lambda_* I_d)^{-1}).$

#### Theorem (Deterministic equivalence (Misiakiewicz and Saeed, 2024)

For sub-Gaussian data, assume  $\Sigma$  is well-behaved, w.h.p.

$$\underbrace{\frac{\|\boldsymbol{\beta}_* - \mathbb{E}_{\varepsilon}[\boldsymbol{\hat{\beta}}]\|_{\boldsymbol{\Sigma}}^2}_{:=\mathcal{B}_{\mathcal{R},\lambda}^{\mathrm{LS}}}} \sim \mathtt{B}_{\mathtt{R},\lambda}^{\mathrm{LS}} := \frac{\lambda_*^2 \big\langle \boldsymbol{\beta}_*, \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I}_{\boldsymbol{d}})^{-2} \boldsymbol{\beta}_* \big\rangle}{1 - n^{-1} \mathrm{tr} (\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I}_{\boldsymbol{d}})^{-2})}$$

$$\underbrace{ \frac{ \operatorname{tr}(\boldsymbol{\Sigma} \boldsymbol{\mathsf{Cov}}_{\varepsilon}(\hat{\boldsymbol{\beta}}))}{:=\mathcal{V}_{\mathbb{R},\lambda}^{\mathsf{LS}}} \sim \boldsymbol{\mathsf{V}}_{\mathtt{R},\lambda}^{\mathsf{LS}} := \ \frac{\sigma^2 \mathrm{tr}(\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_* \boldsymbol{I}_d)^{-2})}{n - \mathrm{tr}(\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \boldsymbol{\lambda}_* \boldsymbol{I}_d)^{-2})} \,.$$

#### Proof of sketch on bias

$$\mathcal{B}_{\mathcal{N},\lambda}^{LS} = \text{Tr}\Big( \boldsymbol{\beta}_{*} \boldsymbol{\beta}_{*}^{\!\top} \boldsymbol{X}^{\!\top} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \lambda)^{-1} \Big) - \lambda \text{Tr}\Big( \boldsymbol{\beta}_{*} \boldsymbol{\beta}_{*}^{\!\top} \boldsymbol{X}^{\!\top} \boldsymbol{X} (\boldsymbol{X}^{\!\top} \boldsymbol{X} + \lambda)^{-2} \Big)$$

o first term

$$ext{Tr} \Big( oldsymbol{A} oldsymbol{X}^ op oldsymbol{X} (oldsymbol{X}^ op oldsymbol{X} + \lambda)^{-1} \Big) \sim ext{Tr} ig( oldsymbol{A} oldsymbol{\Sigma} (oldsymbol{\Sigma} + \lambda_*)^{-1} ig)$$

o second term

$$\lambda \operatorname{tr} \left( \beta_* \beta_*^{\top} \mathbf{X}^{\top} \mathbf{X} (\mathbf{X}^{\top} \mathbf{X} + \lambda)^{-2} \right) \sim \lambda \cdot \frac{\operatorname{Tr} \left( \mathbf{A} \Sigma^2 (\Sigma + \lambda_* \mathbf{I})^{-2} \right)}{n - \operatorname{Tr} (\Sigma^2 (\Sigma + \lambda_* \mathbf{I})^{-2})}$$

$$\leq \operatorname{Tr} \left( \beta_* \beta_*^{\top} \Sigma (\Sigma + \lambda_* \mathbf{I})^{-1} \right) - \operatorname{Tr} \left( \beta_* \beta_*^{\top} \Sigma^2 (\Sigma + \lambda_* \mathbf{I})^{-2} \right)$$

$$\leq \left( 1 - \frac{1}{C} \right) \operatorname{Tr} \left( \beta_* \beta_*^{\top} \Sigma (\Sigma + \lambda_*)^{-1} \right)$$

#### Proof of sketch on bias

$$\mathcal{B}_{\mathcal{N},\lambda}^{\mathrm{LS}} = \mathrm{Tr}\Big( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda)^{-1} \Big) - \lambda \mathrm{Tr}\Big( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda)^{-2} \Big)$$
 o first term

$$\operatorname{Tr}\!\left(\!oldsymbol{A}oldsymbol{X}^{\! op}oldsymbol{X}(oldsymbol{X}^{\! op}oldsymbol{X}+\lambda)^{-1}
ight)\sim\operatorname{Tr}\!\left(oldsymbol{A}oldsymbol{\Sigma}(oldsymbol{\Sigma}+\lambda_*)^{-1}
ight)$$

second term

$$\lambda \operatorname{tr} \left( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{X}^\top \boldsymbol{X} (\boldsymbol{X}^\top \boldsymbol{X} + \lambda)^{-2} \right) \sim \lambda \cdot \frac{\operatorname{Tr} \left( \boldsymbol{A} \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2} \right)}{n - \operatorname{Tr} (\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2})}$$

$$\leq \operatorname{Tr} \left( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-1} \right) - \operatorname{Tr} \left( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2} \right)$$

$$\leq \left( 1 - \frac{1}{C} \right) \operatorname{Tr} \left( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^\top \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_*)^{-1} \right)$$

#### Proof of sketch on bias

$$\mathcal{B}_{\mathcal{N},\lambda}^{\texttt{LS}} = \texttt{Tr}\Big( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda)^{-1} \Big) - \lambda \texttt{Tr}\Big( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda)^{-2} \Big)$$

o first term

$$ext{Tr} \Big( oldsymbol{A} oldsymbol{X}^ op oldsymbol{X} (oldsymbol{X}^ op oldsymbol{X} + \lambda)^{-1} \Big) \sim ext{Tr} \Big( oldsymbol{A} oldsymbol{\Sigma} (oldsymbol{\Sigma} + \lambda_*)^{-1} \Big)$$

o second term

$$\lambda \operatorname{tr} \left( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda)^{-2} \right) \sim \lambda \cdot \frac{\operatorname{Tr} \left( \boldsymbol{A} \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2} \right)}{n - \operatorname{Tr} (\boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2})}$$

$$\leq \operatorname{Tr} \left( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-1} \right) - \operatorname{Tr} \left( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{\Sigma}^2 (\boldsymbol{\Sigma} + \lambda_* \boldsymbol{I})^{-2} \right)$$

$$\leq \left( 1 - \frac{1}{C} \right) \operatorname{Tr} \left( \boldsymbol{\beta}_* \boldsymbol{\beta}_*^{\mathsf{T}} \boldsymbol{\Sigma} (\boldsymbol{\Sigma} + \lambda_*)^{-1} \right)$$

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer:  $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$ ; only train the second layer

infinite many features  $f_{m{a}}(m{x}) = \int_{\mathcal{W}} m{a}(m{w}) \phi(m{x},m{w}) \mathrm{d}\mu(m{w})$ 

$$\mathcal{F}_{p,\mu} := \{f_a : \|\mathbf{a}\|_{L^p(\mu)} < \infty\}, \quad \|f\|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_a} \|\mathbf{a}\|_{L^p(\mu)}$$

- RFMs  $\equiv$  kernel methods by taking p = 2 using Representer theorem
- RFMs  $\not\equiv$  kernel methods if p < 2
- function space:  $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$  if  $p \ge q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu} \,, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- o largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer:  $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$ ; only train the second layer infinite many features  $f_a(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$ 

$$\mathcal{F}_{p,\mu} := \{f_{a} : \|a\|_{L^{p}(\mu)} < \infty\}, \quad \|f\|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_{a}} \|a\|_{L^{p}(\mu)}$$

- RFMs  $\equiv$  kernel methods by taking p = 2 using Representer theorem
- RFMs  $\not\equiv$  kernel methods if p < 2
- function space:  $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$  if  $p \ge q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu}, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- o largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer:  $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$ ; only train the second layer infinite many features  $f_a(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$ 

$$\mathcal{F}_{p,\mu} := \{f_{\mathsf{a}} : \| \mathsf{a} \|_{L^p(\mu)} < \infty \}, \quad \| f \|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_{\mathsf{a}}} \| \mathsf{a} \|_{L^p(\mu)}$$

- RFMs  $\equiv$  kernel methods by taking p = 2 using Representer theorem
- RFMs  $\not\equiv$  kernel methods if p < 2
- function space:  $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$  if  $p \ge q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu}, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- o largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer:  $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$ ; only train the second layer infinite many features  $f_a(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$ 

$$\mathcal{F}_{p,\mu} := \{f_{a} : \|a\|_{L^{p}(\mu)} < \infty\}, \quad \|f\|_{\mathcal{F}_{p,\mu}} := \inf_{f=f_{a}} \|a\|_{L^{p}(\mu)}$$

- RFMs  $\equiv$  kernel methods by taking p = 2 using Representer theorem
- RFMs  $\not\equiv$  kernel methods if p < 2
- function space:  $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$  if  $p \geq q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu} \,, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- o largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer:  $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$ ; only train the second layer infinite many features  $f_a(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$ 

$$\mathcal{F}_{p,\mu} := \{f_{\mathsf{a}} : \| \mathsf{a} \|_{L^p(\mu)} < \infty \}, \quad \| f \|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_{\mathsf{a}}} \| \mathsf{a} \|_{L^p(\mu)}$$

- RFMs  $\equiv$  kernel methods by taking p = 2 using Representer theorem
- RFMs  $\not\equiv$  kernel methods if p < 2
- function space:  $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$  if  $p \ge q$

$$\mathcal{B} = \cup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{p,\mu} , \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{p,\mu}}$$

- largest
- o data-adaptive

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer:  $\mathbf{w} \stackrel{iid}{\sim} \mu \in \mathcal{P}(\mathcal{W})$ ; only train the second layer

infinite many features  $f_{a}(\mathbf{x}) = \int_{\mathcal{W}} a(\mathbf{w}) \phi(\mathbf{x}, \mathbf{w}) \mathrm{d}\mu(\mathbf{w})$ 

$$\mathcal{F}_{p,\mu} := \{ f_{\mathbf{a}} : \|\mathbf{a}\|_{L^p(\mu)} < \infty \}, \quad \|f\|_{\mathcal{F}_{p,\mu}} := \inf_{f = f_{\mathbf{a}}} \|\mathbf{a}\|_{L^p(\mu)}$$

- RFMs  $\equiv$  kernel methods by taking p = 2 using Representer theorem
- RFMs  $\not\equiv$  kernel methods if p < 2
- function space:  $\mathcal{F}_{\infty,\mu} \subseteq \mathcal{F}_{p,\mu} \subseteq \mathcal{F}_{q,\mu} \subseteq \mathcal{F}_{1,\mu}$  if  $p \ge q$

$$\mathcal{B} = \bigcup_{\mu \in \mathcal{P}(\mathcal{W})} \mathcal{F}_{\rho,\mu} \,, \quad \|f\|_{\mathcal{B}} = \inf_{\mu \in \mathcal{P}(\mathcal{W})} \|f\|_{\mathcal{F}_{\rho,\mu}}$$

- largest
- o data-adaptive

Consider the following function space

$$\mathcal{F} = \{ \sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathcal{W} \} \cup \{ 0 \} \cup \{ -\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathbb{S}_1^{d-1} \text{ with the } \ell_1 \text{ ball} \}$$

• the convex hull of  $\mathcal{F}$  is

$$\overline{\mathtt{conv}}\mathcal{F} = \left\{ \sum_{i=1}^{m} \alpha_i f_i \middle| f_i \in \mathcal{F}, \sum_{i=1}^{m} \alpha_i = 1, \alpha_i \geqslant 0, m \in \mathbb{N} \right\}$$

convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

$$\log \mathcal{N}_2(\mathcal{G}_1, \epsilon) \leqslant \log \mathcal{N}_2(\overline{\mathcal{F}}, \epsilon, \mu) \leqslant C\left(\frac{1}{\epsilon}\right)^{\frac{2d}{d+2}}$$

$$C := \underbrace{D_k}_{=\Theta(d)} \left[ \underbrace{C_k}_{=\Theta(1)} (2^{d+1} + 1)^{\frac{1}{d}} \right]^{\frac{2d}{d+2}} \le 10^7 d \quad \text{if } d > 5$$

Consider the following function space

$$\mathcal{F} = \{\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathcal{W}\} \cup \{0\} \cup \{-\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathbb{S}_1^{d-1} \text{ with the } \ell_1 \text{ ball}\}$$

ullet the convex hull of  ${\mathcal F}$  is

$$\overline{\operatorname{conv}}\mathcal{F} = \left\{ \sum_{i=1}^{m} \alpha_{i} f_{i} \middle| f_{i} \in \mathcal{F}, \sum_{i=1}^{m} \alpha_{i} = 1, \alpha_{i} \geqslant 0, m \in \mathbb{N} \right\}.$$

convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

og 
$$N_2(\mathcal{G}_1, \epsilon) \leqslant \log N_2(\overline{\operatorname{conv}}\mathcal{F}, \epsilon, \mu) \leqslant C\left(\frac{1}{\epsilon}\right)^{\frac{2d}{d+2}}$$
.

$$C := \underbrace{D_k \left[ \underbrace{C_k}_{=\Theta(d)} (2^{d+1} + 1)^{\frac{1}{d}} \right]^{\frac{2d}{d+2}}}_{=\Theta(d)} \le 10^7 d \text{ if } d > 5$$

Consider the following function space

$$\mathcal{F} = \{\sigma(\langle \widetilde{\textit{\textbf{w}}}, \cdot \rangle) : \widetilde{\textit{\textbf{w}}} \in \mathcal{W}\} \cup \{0\} \cup \{-\sigma(\langle \widetilde{\textit{\textbf{w}}}, \cdot \rangle) : \widetilde{\textit{\textbf{w}}} \in \mathbb{S}_1^{d-1} \text{ with the } \ell_1 \text{ ball}\}$$

 $\bullet$  the convex hull of  $\mathcal{F}$  is

$$\overline{\operatorname{conv}}\mathcal{F} = \left\{ \sum_{i=1}^{m} \alpha_{i} f_{i} \middle| f_{i} \in \mathcal{F}, \sum_{i=1}^{m} \alpha_{i} = 1, \alpha_{i} \geqslant 0, m \in \mathbb{N} \right\}.$$

• convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

$$\log \mathcal{N}_2(\mathcal{G}_1, \epsilon) \leqslant \log \mathcal{N}_2(\overline{\operatorname{conv}}\mathcal{F}, \epsilon, \mu) \leqslant \frac{C}{\epsilon} \left(\frac{1}{\epsilon}\right)^{\frac{2d}{d+2}}.$$

$$C := \underbrace{D_k}_{=\Theta(d)} \left[ \underbrace{C_k}_{=\Theta(1)} (2^{d+1} + 1)^{\frac{1}{d}} \right]^{\frac{2d}{d+2}} \le 10^7 d \quad \text{if } d > 5$$

• Consider the following function space

$$\mathcal{F} = \{\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathcal{W}\} \cup \{0\} \cup \{-\sigma(\langle \widetilde{\pmb{w}}, \cdot \rangle) : \widetilde{\pmb{w}} \in \mathbb{S}_1^{d-1} \text{ with the } \ell_1 \text{ ball}\}$$

ullet the convex hull of  ${\mathcal F}$  is

$$\overline{\operatorname{conv}}\mathcal{F} = \left\{ \sum_{i=1}^{m} \alpha_{i} f_{i} \middle| f_{i} \in \mathcal{F}, \sum_{i=1}^{m} \alpha_{i} = 1, \alpha_{i} \geqslant 0, m \in \mathbb{N} \right\}.$$

• convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

$$\log \mathcal{N}_2(\mathcal{G}_1, \epsilon) \leqslant \log \mathcal{N}_2(\overline{\operatorname{conv}}\mathcal{F}, \epsilon, \mu) \leqslant \frac{C}{\epsilon} \left(\frac{1}{\epsilon}\right)^{\frac{2d}{d+2}}.$$

$$C := \underbrace{D_k}_{=\Theta(d)} \left[ \underbrace{C_k}_{\Theta(1)} (2^{d+1} + 1)^{\frac{1}{d}} \right]^{\frac{2d}{d+2}} \le 10^7 d \quad \text{if } d > 5$$