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In the era of machine learning
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Practice of deep learning: bigger models perform better!

test loss
A

Classical U-shaped image-driven Di Second-descent
regime : regime

#data >> #parameters #parameters >> #data

model capacity .

Proposed explanation: double descent (Belkin et al., 2019)
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Figure 1: Paradigm among test loss, data, and model capacity.
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Scaling law ( ) in the era of LLMs

test loss = A x Model Size=2 + B x Data Size™® + C




A fundamental concept in machine learning: model capacity

Too many learning curves... J

e U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
e double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
e scaling law (Kaplan et al., 2020; Paquette et al., 2024)
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A fundamental concept in machine learning: model capacity

Too many learning curves... }

e U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
e double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
e scaling law (Kaplan et al., 2020; Paquette et al., 2024)

Bias-variance decomposition

Test error = Bias® + Variance

“Remove bias-variance trade-offs from ML textbooks"

Trade-off is a , by Geman et al. (1992); Neal (2019); Wilson (2025).
| can define model capacity at random and see whatever curve | want to see.
— Ben Recht, 2025
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A fundamental concept in machine learning: model capacity

Too many learning curves... J

e U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
e double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
e scaling law (Kaplan et al., 2020; Paquette et al., 2024)

Double descent can disappear for the same architecture! }
Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
H 1
0.5 ' Critical — Test 0.7 ____ Optimal Early
‘é 0 /‘ Regime ~=- Train Stopping
15 0.4 . 06 10
c i S w
©03 ! 0.5 S
= ' Interpolation i 100 8
a 0.2 :‘/_ Threshold Qo4 w
O
Fo1 ¢ 03 1000
N
0. 02
i 10 20 30 40 50 60 0 0 20 30 40 50 60
ResNet18 Width Parameter

ResNet18 width parameter

(@) Results on ResNet18 (Nakkiran et al., 2019) (b) Optimal early stopping (Nakkiran et al., 2019). 6
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Figure 3: Stanford CS229 lecture notes (Ng and Ma, 2023, Figure 8.12). 7
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Today’s talk: Learning with norm-based capacity

“The size of the weights is more important than the size of the network!”

3 How to precisely characterize the relationship under norm-based model capacity?

e Reshape bias-variance trade-offs, double descent, scaling law under /5
norm-based capacity!

e Yichen Wang, Yudong Chen, Lorenzo Rosasco, Fanghui Liu. The shape of
generalization through the lens of norm-based capacity control. 2025. arXiv

O What is the induced function space and statistical/computational efficiency under

norm-based capacity?

e Which function class can be efficiently learned by neural networks?

e Fanghui Liu, Leello Dadi, and Volkan Cevher. Learning with norm constrained,

over-parameterised, two-layer neural networks. JMLR 2024.
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e Reshape scaling-law:
test loss = A x Data Size™? + B x Model Size™® + C with a, b > 0
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An example of linear regression: Textbook level and beyond

e niid. samples {(x;,y;)}"; with x; e R, y; e R
e y={(B.,x)+¢, E(c) =0 and V(¢) = 02, covariance matrix & = E[xx']

o ridge regression: 8= (X' X + )Xy
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Saeed, 2024): law of large samples/dimensions in random matrix theory

The empirical spectral measure converges to a deterministic limit.
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e ni.id. samples {(x;,y;)}"; with x; e R?, y; € R
e y={(B.,x)+¢ E(c) =0 and V(¢) = 02, covariance matrix ¥ = E[xx']
o ridge regression: 8= (X' X + )Xy

Target: precise analysis

The expected test risk E.||3 — B.]% vs. the norm E.||3|2

(O Deterministic equivalence (Cheng and Montanari, 2024; Misiakiewicz and
Saeed, 2024): law of large samples/dimensions in random matrix theory

Tr(xTX(xTx + )\)‘1) ~Tr(E(E 4 )Y, wehp.

e ~ can be asymptotic or non-asymptotic at the rate of O(1//n).
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Our results

Theorem (Deterministic equivalence of estimator’s norm)

We have a bias-variance decomposition E. |83 = Bar.x + Vi
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Our results

Theorem (Deterministic equivalence of estimator’s norm)

We have a bias-variance decomposition E. |83 = Bar.x + Vi
For well-behaved data, we have

(Z(Z 4 M) 72) A2(B.,2(Z+A.)%8.)
n 1—3 Tr(Z2(2+X.)72)

Buy (B, Z2(S 4 A,) 26.)

2 Tr(Z(Z + ) 72)
VN7)\ = > oy -
n—Tr(Z2(X + A)72?)

Remark: Which model capacity suffices to characterize the test risk?

e Norm-based capacity: v ©
o effective dimension-style Tr(X(X + M\)71): X ©
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Example: Relationship under isotropic features (X = /)

O Test risk Ry and norm N, formulates a cubic curve (complex but precise).
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12~ ~<

2020): Ry = [|B:]2 =Ny -~ N

e A 00r Ry = (B2 — V)2

13



Precise analysis via deterministic equivalence

[ Precisely describe the learning curve.
e phase transitions, (non-)monotonicity, etc.
O Enables accurate comparison between estimators/algorithms.

e Foundations of scaling law: data or parameter under the same budget, etc.
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[ Precisely describe the learning curve.
e phase transitions, (non-)monotonicity, etc.
O Enables accurate comparison between estimators/algorithms.

e Foundations of scaling law: data or parameter under the same budget, etc.

Deterministic
equivalence

Upper/lower
. bound
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Which model capacity is suitable (for neural networks)?

Table 1: Complexity measures compared in the empirical study (Jiang et al., 2020),
and their correlation with generalization.
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Parameter Frobenius norm S IwWiz 0.073
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Table 1: Complexity measures compared in the empirical study (Jiang et al., 2020),

and their correlation with generalization.

rank correlation
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Figure 5: Experiments on two-layer neural networks. 1s
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Two-layer neural networks, path norm

hidden layer
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RN Barron, 1993; E et al., 2021
Wm, as —» ( )
B:= U/IG’P(W){fa : HaHLz(“) < QC}
: e Variation in only a few directions
(Parhi and Nowak, 2022)

Can neural networks identify this structure?

16



(Liu, Dadi, Cevher, JMLR’24)

Theorem (Informal, sample complexity of learning f* € 5)

To achieve e-excess risk,
o Kernel methods require Q(¢=9) samples.

e Two-layer neural networks require Q(e_zd%z) samples.
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Which function class can be efficiently learned by neural networks

Statistically-efficient

= = = = o >
T T T T T >
RKHS F, hyper-RKHS Fou Fiu Barron Sobolev
(Aronszajn 1950) (Ong et al. 2004; (Chen et al. 2023) (Bach 2017; (Barron 1993; (Schmidt-Hieber 2020)
Liu et al. 2021) Celentano et al. 2021) Eetal. 2021;
Liu et al. 2024)
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Optimization in Barron spaces is NP hard: curse of dimensionality!
(Bach, 2017)
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Which function class can be efficiently learned by neural networks

Statistically-efficient Statistically
inefficient
RKHS 7, ,, hyper-RKHS Fo, Hiu Barron Sobolev
(Aronszajn 1950) (Ong et al. 2004; (Chen et al. 2023) (Bact}2017; (Barron 1993; (Schmidt-Hieber 2020)
Liu et al. 2021) Celentanolet al. 2021) Eue; f;|22g; j‘ ]
Computationally-efficient

Computationally-inefficient :

t
approximation

I
1
statistical

v

computational

e RelLU neurons (Chen and Narayanan, 2023)

e Low-dimensional polynomials (Arous et al., 2021; Lee et al., 2024)
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Takeaway messages

Deep learning phenomena = interesting mathematical problems

O Be aware of model capacity!
e Reshape bias-variance trade-offs, double descent, scaling law under proper />
norm-based capacity via deterministic equivalence.

Deterministic

'» ) Upper/lower
equivalence

. bound
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3 Which function class can be efficiently learned by neural networks?
e Neural networks can adapt to low-dimensional structure and avoid CoD!

Statistically-efficient: Statistically
no curse of dimensionality (CoD) inefficient

RKHS (Aronszajn 1950; Bach 2017)

Barron Sobolev 1
(Barron 1963; E et al. 2021) (SchmidtHieber 2020) +

Computationally-efficient Computationally-inefficient : 19
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Takeaway messages

Deep learning phenomena = interesting mathematical problems

O Be aware of model capacity!
e Reshape bias-variance trade-offs, double descent, scaling law under proper />
norm-based capacity via deterministic equivalence.

Deterministic
equivalence

Upper/lower
. bound

3 Which function class can be efficiently learned by neural networks?
e Neural networks can adapt to low-dimensional structure and avoid CoD!

Theoretical advances = principled guidance in practical problems

A How does our theory contribute to practical fine-tuning problems?
e One-step full gradient can be sufficient! [GitHub] 19
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Experimental results
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Figure 6: Experiments on two-layer fully connected neural networks with noise level
n = 0.2. The left figure shows the relationship between test (training) loss and the
number of the parameters p. The middle figure shows the relationship between the
Frobenius norm and p. The right figure shows the relationship between the test loss

and Fro-norm.



An example of linear model: a textbook level

o {(xi,yi)}, Ev 1, x; € RY, y; € R, covariance matrix ¥ = E[xx"]
o y = (B, x) + ¢ with E(e) = 0 and V(g) = o2
o ridge regression: 8= (X' X + )Xy

e min-£>-norm interpolation: Bumin = argming [|B||2,s.t. XB =y
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An example of linear model: a textbook level

o {(xi,yi)}, Ev w, x; € R?, y; € R, covariance matrix ¥ = E[xx"]

o y = (B, x) + ¢ with E(e) = 0 and V(g) = o2
o ridge regression: 8= (X' X + )Xy
e min-l-norm interpolation: Bmin = argming [|B2,st. XB =y
e expected test risk: bias-variance decomposition
RS = E.||B. — BI% = 8. — B8] + tr(SCov.(B)) -

~~
._pRLs LS
'*BR,A =VR A

o BE, =N(B., (X' X+ ADNTIB(XTX +A1)71,)
o VI, =o?Tr(EX' X(X' X + \I)72)
o *Intuitive fact: for i.i.d. sub-Gaussian data X, we have

1
||;xTx —Xlop = O(+/d/n),w.h.p.



Beyond textbook level: deterministic equivalence (

)

Tr (xTX(xTx + A)‘l) ~TE(S(E + A ).

e ~ can be asymptotic or non-asymptotic at the rate of O(1/y/n).
e )\, is the non-negative solution to the self-consistent equation
n—3 =Tr(S(T+ Ada) ™).




Beyond textbook level: deterministic equivalence (

)

Tr (xTX(xTx + )\)_1) ~TE(S(E + A ).

e ~ can be asymptotic or non-asymptotic at the rate of O(1/y/n).
e )\, is the non-negative solution to the self-consistent equation
n—3 =Tr(S(T+ Ada) ™).

Theorem (Deterministic equivalence (

For sub-Gaussian data, assume X is well-behaved, w.h.p.

2 )\2</8* 2(2 == A*Id)_2/3*>
- 2 pLs ._ ' )
H/B* EE[ﬁ]”E BR,/\ T 1 n_]_tr(zz(z + )\*Id)_z)

::B%,A
o2tr(Z2(Z 4 Adg)?)
n—tr(Z2(X + A\ dg)2)

tr(BCov.(B)) ~ Ve =
—_—

LS
=VR




Proof of sketch on bias
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Proof of sketch on bias

B, =Tr (ﬂ*BIXTX(XTX + A)—l) - )\Tr(ﬂ*ﬁIXTX(XTX + )\)_2)
o first term
Tr (AXTX(XTX + ,\)—1) ~Tr(AZ(Z + A.) 1), VA

o second term

T 52 5
xer(B.ATXTX(XTX +0)72) ~ A Tr (8,61 52(S + A1) 2)

n—Tr(Z2(Z + \.J)~2)
<Tr(BBLE(Z 4+ M) = Tr(B.BLZ(Z + A1) 72)

< (1 _ %)Tr(ﬂ*ﬂIE(E A0
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*Path norm, Barron spaces, RKHS ( )

Consider a random features model (RFM) (Rahimi and Recht, 2007)
o first layer: w X w € P(W); only train the second layer

infinite many features f,(x) = [,,, a(w)@(x, w)du(w)
Fou = Afatllallegy < oo}, Ifllz,, = Inf [[allr()

e RFMs = kernel methods by taking p = 2 using Representer theorem
o RFMs # kernel methods if p < 2
e function space: Foo ;, C Fp, C Fqpu CFruifp>q

For any 1 < p < oo, define

B=UueromFour [Ifl= nf [flz,

o largest
o data-adaptive
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Proof sketch: convex hull technique and its constant!

e Consider the following function space
F={o((w,")): weW}u{0}U{—o((w,-)) : w €SI~ with the ¢, ball}

o the convex hull of Fis
conv.F = {Za;fi’fi Ef,Za,-zl,a,-}O,meN}.
i=1 i=1

e convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

2d

1Y\ 2
log N2(G1, €) < log No(eonvF, e, u) < C(E) .



Proof sketch: convex hull technique and its constant!

e Consider the following function space
F={o((w,")): weWu{0}U{-o((w,-)) : w € S{~" with the ¢; ball}

o the convex hull of F is
conv.F = {Za,-f,-’f,- S ]-',Za,- =1l,0;20,me N}.
i=1 i=1
e convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

1\ @2
log N2 (G1,€) < logNa(conv.F, e, pu) < C(—> .
€
e control the constant C

Ci= D[ G (2% +1)3]¥2 <10°d ifd>5
~—
=0(d) =O(1)
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