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❐ Research goal

• characterize learning efficiency in theory

• contribute to practice
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In the era of machine learning

Prefer more data and larger model to obtain better performance...

MLP:
<< 1 million
parameters

ResNet-
152:

60.3 million
parameters

Transformer:
340 million
parameters

GPT-2:
1.5 billion

parameters

GPT-3, Chat-GPT:
175 billion
parameters

2017 2019 202020152012

AlexNet

2022

GPT-4

Deepseek V3:
600 billion
parameters

2024

3



ML textbooks: Larger models tend to overfit!

Practice of deep learning: bigger models perform better!

model capacity

Classical U-shaped
 regime

test loss

#data >> #parameters

Proposed explanation: double descent (Belkin et al., 2019)
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Learning paradigm in the past twenty years

model capacity

Classical U-shaped
 regime

Second-descent
 regime

test loss

image-driven DL

LLM-paradigm

#data >> #parameters #parameters >> #data

Figure 1: Paradigm among test loss, data, and model capacity.

Scaling law (Kaplan et al., 2020) in the era of LLMs

test loss = A × Model Size−a + B × Data Size−b + C
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A fundamental concept in machine learning: model capacity

Too many learning curves...

• U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
• double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
• scaling law (Kaplan et al., 2020; Paquette et al., 2024)

Double descent can disappear for the same architecture!

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT
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ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu
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(a) Results on ResNet18 (Nakkiran et al., 2019)
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(b) Optimal early stopping (Nakkiran et al., 2019).
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A fundamental concept in machine learning: model capacity

Too many learning curves...

• U-shaped curve (bias-variance trade-offs) (Vapnik, 1995; Hastie et al., 2009)
• double (multiple) descent (Belkin et al., 2019; Liang et al., 2020)
• scaling law (Kaplan et al., 2020; Paquette et al., 2024)

Bias-variance decomposition

Test error = Bias2 + Variance

(Hastie et al., 2009, Figure 2.11)
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(b) Optimal early stopping (Nakkiran et al., 2019).
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Bias-variance decomposition

Test error = Bias2 + Variance

“Remove bias-variance trade-offs from ML textbooks"
Trade-off is a misnomer, by Geman et al. (1992); Neal (2019); Wilson (2025).
I can define model capacity at random and see whatever curve I want to see.

— Ben Recht, 2025
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(b) Optimal early stopping (Nakkiran et al., 2019).
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(b) Optimal early stopping (Nakkiran et al., 2019). 6



Today’s talk: Learning with norm-based capacity

(Bartlett, 1998)

“The size of the weights is more important than the size of the network!”

❐ How to precisely characterize the relationship under norm-based model capacity?

• Reshape bias-variance trade-offs, double descent, scaling law under ℓ2
norm-based capacity!

• Yichen Wang, Yudong Chen, Lorenzo Rosasco, Fanghui Liu. The shape of
generalization through the lens of norm-based capacity control. 2025. arXiv

❐ What is the induced function space and statistical/computational efficiency under
norm-based capacity?

• Which function class can be efficiently learned by neural networks?
• Fanghui Liu, Leello Dadi, and Volkan Cevher. Learning with norm constrained,

over-parameterised, two-layer neural networks. JMLR 2024.

7

https://arxiv.org/abs/2502.01585
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Today’s talk: Learning with norm-based capacity

(Bartlett, 1998)
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Background: Random features ridge regression
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ϕm

Wm,1

...

y
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a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

fm(x ;θ) =
m∑
i=1

aiϕ(x ,w i ), θ := {(ai ,w i )}mi=1

• ϕ : X ×W → R, e.g., ReLU:
ϕ(x ,w) = max(⟨x ,w⟩, 0)

• Random features models (RFMs) Rahimi
and Recht (2007):
◦ {w i}mi=1

iid∼ µ for a given µ ∈ P(W)

◦ only train the second layer

â := argmin
a∈Rp

{
n∑

i=1

(yi − f (x i ; a))
2 + λ∥a∥2

2

}
=

(
Z⊤Z + λI p

)−1
Z⊤y .

◦ Z ∈ Rn×p with [Z ]ij =
1√
pϕ(x i ,w j).

• Norm over the first-layer (untrained) ∥W ∥F

• Norm over the second-layer ∥â∥2
2 8
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(Wang, Chen, Rosasco, Liu, 2025)
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(d) λ = 0.001

• γ := p/n, p : model size (width), n : data size

• Reshape scaling-law:
test loss = A × Data Size−a + B × Model Size−b + C with a, b > 0
test loss = A × Data Size−a × Norm Capacity−b with a > 0 and b ∈ R

9
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(d) λ = 0.001

• γ := p/n, p : model size (width), n : data size

• Phase transition exists but double descent does not exist

• More close to U-shaped instead of double descent

• Over-parameterization is still better than under-parameterization

• Reshape scaling-law:
test loss = A × Data Size−a + B × Model Size−b + C with a, b > 0
test loss = A × Data Size−a × Norm Capacity−b with a > 0 and b ∈ R
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(d) λ = 0.001

• γ := p/n, p : model size (width), n : data size

Test error = Bias2 + Variance
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Control norm by tuning λ: L-curve (Hansen, 1992)

Explicit (model size) vs. Implicit (norm)

One-to-one mapping between norm and λ
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An example of linear regression: Textbook level and beyond

• n i.i.d. samples {(x i , yi )}ni=1 with x i ∈ Rd , yi ∈ R
• y = ⟨β∗, x⟩+ ε, E(ε) = 0 and V(ε) = σ2, covariance matrix Σ = E[xx⊤]
• ridge regression: β̂ = (X⊤X + λI )−1X⊤y

Target: precise analysis

The expected test risk Eε∥β̂ − β∗∥2
Σ vs. the norm Eε∥β̂∥2

2

❐ Deterministic equivalence (Cheng and Montanari, 2024; Misiakiewicz and
Saeed, 2024): law of large samples/dimensions in random matrix theory

Tr
(
X⊤X (X⊤X + λ)−1

)
∼ Tr

(
Σ(Σ+ λ∗)

−1) ,w .h.p.

• ∼ can be asymptotic or non-asymptotic at the rate of O(1/
√
n).

• λ∗ is the non-negative solution to the self-consistent equation
n − λ

λ∗
= Tr(Σ(Σ+ λ∗)−1).

11
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Our results

Theorem (Deterministic equivalence of estimator’s norm)

We have a bias-variance decomposition Eε∥β̂∥2
2 = BN ,λ + VN ,λ.

For well-behaved data, we have

BN,λ :=
〈
β∗,Σ

2(Σ+ λ∗)
−2β∗

〉
+
Tr(Σ(Σ+ λ∗)−2)

n

λ2
∗⟨β∗,Σ(Σ+λ∗)−2β∗⟩

1− 1
n Tr(Σ

2(Σ+λ∗)−2)
,

VN,λ :=
σ2 Tr(Σ(Σ+ λ∗)−2)

n − Tr(Σ2(Σ+ λ∗)−2)
.

Remark: Which model capacity suffices to characterize the test risk?

• Norm-based capacity: ✓ ,

• effective dimension-style Tr(Σ(Σ+ λI )−1): ✗ /
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Example: Relationship under isotropic features (Σ = I d)

❐ Test risk Rλ and norm Nλ formulates a cubic curve (complex but precise).

• min-norm interpolator (λ = 0):

R0 =

 N0 − ∥β∗∥2
2; in under-parameterized regimes√[

N0 − (∥β∗∥2
2 − σ2)

]2
+ 4∥β∗∥2

2σ
2 − σ2 .

• optimal regularization λ = dσ2

∥β∗∥2
2

(Wu and Xu,

2020): Rλ = ∥β∗∥2
2 − Nλ

• λ → ∞: Rλ =
(
∥β∗∥2 −

√
Nλ

)2
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Precise analysis via deterministic equivalence

❐ Precisely describe the learning curve.
• phase transitions, (non-)monotonicity, etc.

❐ Enables accurate comparison between estimators/algorithms.
• Foundations of scaling law: data or parameter under the same budget, etc.

Deterministic 
equivalence

Upper/lower 
bound

Your bound is
loose!

Your model is
simple!
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Which model capacity is suitable (for neural networks)?

Table 1: Complexity measures compared in the empirical study (Jiang et al., 2020),
and their correlation with generalization.

name definition rank correlation
Parameter Frobenius norm

∑L
i=1 ∥W i∥2

F 0.073
Frobenius distance to initialization

∑L
i=1 ∥W i − W 0

i ∥2
F −0.263

Spectral complexity
∏L

i=1 ∥W i∥
(∑L

i=1
∥W i∥

3/2
2,1

∥W i∥
3/2

)2/3

−0.537

Fisher-Rao (L+1)2
n

∑n
i=1⟨W ,∇W ℓ(hW (x i ), yi )⟩ 0.078

Path-norm
∑

(i0,...,iL)

∏L
j=1

(
W ij ,ij−1

)2
0.373
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Two-layer neural networks, path norm

[x]1

[x]2

[x]d

...

ϕ1
W1,1

ϕ2

W2,1

ϕ3

W3,1

ϕm

Wm,1

...

y

a1

a2

a3

am

input
x ∈ Rd

hidden layer
ϕi = σ⟨wi,x⟩

output
y ∈ R

ℓ1-path norm (Neyshabur et al.,
2015)

∥θ∥P := 1
m

∑m
k=1 |ak |∥w k∥1

• equivalent to Barron spaces B
(Barron, 1993; E et al., 2021)

B := ∪µ∈P(W){fa : ∥a∥L2(µ) < ∞}

• Variation in only a few directions
(Parhi and Nowak, 2022)

Can neural networks identify this structure?
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(Liu, Dadi, Cevher, JMLR’24)

Theorem (Informal, sample complexity of learning f ⋆ ∈ B)

To achieve ϵ-excess risk,

• Kernel methods require Ω(ϵ−d) samples.

• Two-layer neural networks require Ω(ϵ−
2d+2
d+2 ) samples. smaller than ϵ−2

No Curse of Dimensionality: NNs adapt to directional smoothness.

❐ Track sample complexity (via metric entropy) and dimension dependence

ϵ−2 ϵ−
2d+2
d+2 ϵ−

2d+3
d+3

(E et al., 2019) Ours (Wu and Long, 2022) minimax (Siegel and Xu, 2021)

log d d poly(d) exp(d)?

The “best” trade-off between ϵ and d .
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Which function class can be efficiently learned by neural networks

RKHS hyper-RKHS Barron Sobolev

Statistically-efficient

(Bach 2017; 
Celentano et al. 2021)

(Barron 1993; 
E et al. 2021;

 Liu et al. 2024)

(Schmidt-Hieber 2020)(Chen et al. 2023)(Ong et al. 2004; 
Liu et al. 2021)

(Aronszajn 1950)

Optimization in Barron spaces is NP hard: curse of dimensionality!
(Bach, 2017)approximation statistical computational

• ReLU neurons (Chen and Narayanan, 2023)

• Low-dimensional polynomials (Arous et al., 2021; Lee et al., 2024)
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Takeaway messages

Deep learning phenomena ⇒ interesting mathematical problems

❐ Be aware of model capacity!
• Reshape bias-variance trade-offs, double descent, scaling law under proper ℓ2

norm-based capacity via deterministic equivalence.

Deterministic 
equivalence

Upper/lower 
bound

Your bound is
loose!

Your model is
simple!

❐ Which function class can be efficiently learned by neural networks?
• Neural networks can adapt to low-dimensional structure and avoid CoD!

Theoretical advances ⇒ principled guidance in practical problems

❐ How does our theory contribute to practical fine-tuning problems?
• One-step full gradient can be sufficient! [GitHub]

19

https://github.com/YuanheZ/LoRA-One
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Figure 6: Experiments on two-layer fully connected neural networks with noise level
η = 0.2. The left figure shows the relationship between test (training) loss and the
number of the parameters p. The middle figure shows the relationship between the
Frobenius norm and p. The right figure shows the relationship between the test loss
and Fro-norm.



An example of linear model: a textbook level

• {(x i , yi )}ni=1
i.i.d.∼ µ, x i ∈ Rd , yi ∈ R, covariance matrix Σ = E[xx⊤]

• y = ⟨β∗, x⟩+ ε with E(ε) = 0 and V(ε) = σ2

• ridge regression: β̂ = (X⊤X + λI )−1X⊤y

• min-ℓ2-norm interpolation: β̂min = argminβ ∥β∥2, s.t. Xβ = y

• expected test risk: bias-variance decomposition

RLS := Eε∥β∗ − β̂∥2
Σ = ∥β∗ − Eε[β̂]∥2

Σ︸ ︷︷ ︸
:=BLS

R,λ

+ tr(ΣCovε(β̂))︸ ︷︷ ︸
:=VLS

R,λ

.

• BLS
R,λ = λ2⟨β∗, (X⊤X + λI )−1Σ(X⊤X + λI )−1β∗⟩

• VLS
R,λ = σ2Tr(ΣX⊤X (X⊤X + λI )−2)

• *Intuitive fact: for i.i.d. sub-Gaussian data X , we have

∥1
n
X⊤X −Σ∥op = Θ(

√
d/n) ,w .h.p .
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Beyond textbook level: deterministic equivalence (Cheng and
Montanari, 2024)

Tr
(
X⊤X (X⊤X + λ)−1

)
∼ Tr

(
Σ(Σ+ λ∗I )−1) .

• ∼ can be asymptotic or non-asymptotic at the rate of O(1/
√
n).

• λ∗ is the non-negative solution to the self-consistent equation
n − λ

λ∗
= Tr(Σ(Σ+ λ∗I d)−1).

Theorem (Deterministic equivalence (Misiakiewicz and Saeed, 2024))

For sub-Gaussian data, assume Σ is well-behaved, w.h.p.

∥β∗ − Eε[β̂]∥2
Σ︸ ︷︷ ︸

:=BLS
R,λ

∼ BLSR,λ :=
λ2
∗
〈
β∗,Σ(Σ+ λ∗I d)−2β∗

〉
1 − n−1tr(Σ2(Σ+ λ∗I d)−2)

tr(ΣCovε(β̂))︸ ︷︷ ︸
:=VLS

R,λ

∼ VLSR,λ :=
σ2tr(Σ2(Σ+ λ∗I d)−2)

n − tr(Σ2(Σ+ λ∗I d)−2)
.

Remark: Effective dimension: characterize variance but have no label
information
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Proof of sketch on bias

BLS
N ,λ = Tr

(
β∗β

⊤
∗X⊤X (X⊤X + λ)−1

)
− λTr

(
β∗β

⊤
∗X⊤X (X⊤X + λ)−2

)
◦ first term

Tr
(
AX⊤X (X⊤X + λ)−1

)
∼ Tr

(
AΣ(Σ+ λ∗)

−1) ,∀A
◦ second term

λtr
(
β∗β

⊤
∗X⊤X (X⊤X + λ)−2

)
∼ λ · Tr

(
β∗β⊤∗Σ

2(Σ+ λ∗I )−2
)

n − Tr(Σ2(Σ+ λ∗I )−2)

≤ Tr(β∗β
⊤
∗Σ(Σ+ λ∗I )−1)− Tr(β∗β

⊤
∗Σ

2(Σ+ λ∗I )−2)

≤
(

1 − 1
C

)
Tr(β∗β

⊤
∗Σ(Σ+ λ∗)

−1)
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*Path norm, Barron spaces, RKHS (Chen et al., 2023)

Consider a random features model (RFM) (Rahimi and Recht, 2007)

• first layer: w iid∼ µ ∈ P(W); only train the second layer

infinite many features fa(x) =
∫
W a(w)ϕ(x ,w)dµ(w)

Fp,µ := {fa : ∥a∥Lp(µ) < ∞}, ∥f ∥Fp,µ := inf
f=fa

∥a∥Lp(µ)

• RFMs ≡ kernel methods by taking p = 2 using Representer theorem
• RFMs ̸≡ kernel methods if p < 2
• function space: F∞,µ ⊆ Fp,µ ⊆ Fq,µ ⊆ F1,µ if p ≥ q

For any 1 ≤ p ≤ ∞, define

B = ∪µ∈P(W)Fp,µ , ∥f ∥B = inf
µ∈P(W)

∥f ∥Fp,µ

◦ largest
◦ data-adaptive
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Proof sketch: convex hull technique and its constant!

• Consider the following function space

F = {σ(⟨w̃ , ·⟩) : w̃ ∈ W}∪ {0} ∪ {−σ(⟨w̃ , ·⟩) : w̃ ∈ Sd−1
1 with the ℓ1 ball}

• the convex hull of F is

convF =

{
m∑
i=1

αi fi

∣∣∣∣fi ∈ F ,

m∑
i=1

αi = 1, αi ⩾ 0,m ∈ N

}
.

• convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

logN2(G1, ϵ) ⩽ logN2(\F , ϵ, µ) ⩽ C

(
1
ϵ

) 2d
d+2

.

• control the constant C

C := Dk︸︷︷︸
=Θ(d)

[ Ck︸︷︷︸
=Θ(1)

(2d+1 + 1)
1
d ]

2d
d+2 ≤ 107d if d > 5
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F = {σ(⟨w̃ , ·⟩) : w̃ ∈ W}∪ {0} ∪ {−σ(⟨w̃ , ·⟩) : w̃ ∈ Sd−1
1 with the ℓ1 ball}

• the convex hull of F is

convF =

{
m∑
i=1

αi fi

∣∣∣∣fi ∈ F ,

m∑
i=1

αi = 1, αi ⩾ 0,m ∈ N

}
.

• convex hull technique (Van Der Vaart et al., 1996, Theorem 2.6.9)

logN2(G1, ϵ) ⩽ logN2(convF , ϵ, µ) ⩽ C

(
1
ϵ

) 2d
d+2

.

• control the constant C

C := Dk︸︷︷︸
=Θ(d)

[ Ck︸︷︷︸
=Θ(1)

(2d+1 + 1)
1
d ]

2d
d+2 ≤ 107d if d > 5
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