Discrete Mathematics and its application (CS147)

Lecture 5: Merge Sort

Fanghui Liu

Department of Computer Science, University of Warwick, UK

• Recall that Bubble-sort runs in $\Theta(n^2)$ time.

How to do it efficiently?

• Recall that Bubble-sort runs in $\Theta(n^2)$ time.

How to do it efficiently?

- Divide and conquer algorithm
- How to use recurrence relations to analyse runtimes of algorithms
- Runtime of Merge-sort is $\Theta(n \log n)$

Divide and conquer

- Basic algorithm design paradigmconsists of 3 steps:
 - Divide: Divide the given problem into smaller subproblems
 - Conquer: Recursively solve each subproblem
 - Combine: Combine the solutions of these subproblems to get a solution for the original problem

Key idea in Merge-sort¹

- divide: break the array into two parts
- ▶ recursive calls: recursively call Merge-sort to sort the two halves of the array
- ▶ merge: after the recursive call, the sub-problems are sorted, and then we merge them.

WARWICH

 $^{{}^{1}{\}rm Check \ the \ implementation \ details \ {\tt https://www.geeksforgeeks.org/merge-sort/ \ if \ you're \ interested \ in.}$

Key idea in Merge-sort¹

- divide: break the array into two parts
- ▶ recursive calls: recursively call Merge-sort to sort the two halves of the array
- ▶ merge: after the recursive call, the sub-problems are sorted, and then we merge them.

Algorithm 1: Merge-sort (Pseudo-code)

Input: An array A[1, 2, ..., n]Output: An sorted array D[1, 2, ..., n]1 Divide: split A[] into two parts B[] and C[]; 2 Recursive calls: B[] = Merge-sort(B[]), C[] = Merge-sort(C[]);3 Return Merge(B[], C[]);

¹Check the implementation details https://www.geeksforgeeks.org/merge-sort/ if you're interested in.

Illustration of Merge-sort

 $\nabla \nabla$

Algorithm 2: MERGE-SORT

Input: An array A[1, 2, ..., n]Output: An sorted array D[1, 2, ..., n]1 MERGE-SORT $(A[1, ..., \lfloor n/2 \rfloor])$; 2 MERGE-SORT $(A[\lfloor n/2 \rfloor + 1, ..., n])$; 3 $D[1, ..., n] \leftarrow$ Merge $(A[1, ..., \lfloor n/2 \rfloor], A[\lfloor n/2 \rfloor + 1, ..., n])$;

Algorithm 2: MERGE-SORT

Input: An array A[1, 2, ..., n]Output: An sorted array D[1, 2, ..., n]1 MERGE-SORT $(A[1, ..., \lfloor n/2 \rfloor])$ #runtime = $T(\lfloor n/2 \rfloor)$; 2 MERGE-SORT $(A[\lfloor n/2 \rfloor + 1, ..., n])$; 3 $D[1, ..., n] \leftarrow$ Merge $(A[1, ..., \lfloor n/2 \rfloor], A[\lfloor n/2 \rfloor + 1, ..., n])$;

Algorithm 2: MERGE-SORT

Input: An array A[1, 2, ..., n]Output: An sorted array D[1, 2, ..., n]1 MERGE-SORT $(A[1, ..., \lfloor n/2 \rfloor])$ #runtime = $T(\lfloor n/2 \rfloor)$; 2 MERGE-SORT $(A[\lfloor n/2 \rfloor + 1, ..., n])$ #runtime = $T(n - \lfloor n/2 \rfloor)$; 3 $D[1, ..., n] \leftarrow$ Merge $(A[1, ..., \lfloor n/2 \rfloor], A[\lfloor n/2 \rfloor + 1, ..., n])$;

Algorithm 2: MERGE-SORT

Input: An array A[1, 2, ..., n]Output: An sorted array D[1, 2, ..., n]1 MERGE-SORT $(A[1, ..., \lfloor n/2 \rfloor)$ #runtime = $T(\lfloor n/2 \rfloor)$; 2 MERGE-SORT $(A[\lfloor n/2 \rfloor + 1, ..., n])$ #runtime = $T(n - \lfloor n/2 \rfloor)$; 3 $D[1, ..., n] \leftarrow$ Merge $(A[1, ..., \lfloor n/2 \rfloor], A[\lfloor n/2 \rfloor + 1, ..., n])$ #runtime = $\Theta(n)$;

Algorithm 2: MERGE-SORT

Input: An array A[1, 2, ..., n]Output: An sorted array D[1, 2, ..., n]1 MERGE-SORT $(A[1, ..., \lfloor n/2 \rfloor])$ #runtime = $T(\lfloor n/2 \rfloor)$; 2 MERGE-SORT $(A[\lfloor n/2 \rfloor + 1, ..., n])$ #runtime = $T(n - \lfloor n/2 \rfloor)$; 3 $D[1, ..., n] \leftarrow$ Merge $(A[1, ..., \lfloor n/2 \rfloor], A[\lfloor n/2 \rfloor + 1, ..., n])$ #runtime = $\Theta(n)$;

Theorem

Merge takes $\Theta(n)$ time.

Algorithm 2: MERGE-SORT

Input: An array A[1, 2, ..., n]Output: An sorted array D[1, 2, ..., n]1 MERGE-SORT $(A[1, ..., \lfloor n/2 \rfloor])$ #runtime = $T(\lfloor n/2 \rfloor)$; 2 MERGE-SORT $(A[\lfloor n/2 \rfloor + 1, ..., n])$ #runtime = $T(n - \lfloor n/2 \rfloor)$; 3 $D[1, ..., n] \leftarrow$ Merge $(A[1, ..., \lfloor n/2 \rfloor], A[\lfloor n/2 \rfloor + 1, ..., n])$ #runtime = $\Theta(n)$;

Theorem

Merge takes $\Theta(n)$ time.

Recurrence relation: $T(n) = T(\lfloor n/2 \rfloor) + T(n - \lfloor n/2 \rfloor) + \Theta(n)$

Merge subroutine

- \blacktriangleright Input: sorted arrays $B[1,2,\cdots,k]$ and $C[1,2,\cdots,t]$
- ▶ Output: Array $D[1, 2, \cdots, k+t]$ that contains the enties B and C in an increasing order.

Example

Input: B: [3, 7, 9, 10] ; C: [1,4,5] Output: D: [1,3,4,5,7,9,10]

$Case\; \big(B(i) \leq C(j)\big)$
$D(r) \leftarrow B(i)$ $r \leftarrow r + 1$ $i \leftarrow i + 1$

Case (B(i) > C(j))

 $\begin{array}{l} D(r) \leftarrow C(j) \\ r \leftarrow r+1 \\ j \leftarrow j+1 \end{array}$

Merge

Case $(i > k)$	
$D(r) \leftarrow C(j)$ $r \leftarrow r+1$ $j \leftarrow j+1$	
Case $(i > t)$	
$D(r) \leftarrow B(i)$	

$$\begin{array}{c} r \leftarrow r+1 \\ i \leftarrow i+1 \end{array}$$

Persudocode for Merge

Algorithm 3: MERGE

Input: sorted arrays $B[1, 2, \dots, k]$ and $C[1, 2, \dots, t]$ **Output:** An sorted array $D[1, 2, \dots, k+t]$ that contains the entries B and C. 1 Initialization: i = 1 and j = 1: **2** for r = 1 to (k + t) do if $i \leq k$ and $j \leq t$ then 3 if B(i) < C(j) then 4 $D(r) \leftarrow B(i), i \leftarrow i+1$: 5 6 end else 7 $D(r) \leftarrow C(j), j \leftarrow j+1;$ 8 end 9 10 end else if i > k, then $D[r] \leftarrow C[i], i \leftarrow i+1$: 11 else if i > t, then $D[r] \leftarrow B[i]$, $i \leftarrow i + 1$; 12 13 end

Recurrence relation:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ T(\lfloor n/2 \rfloor) + T(n - \lfloor n/2 \rfloor) + \Theta(n) & \text{otherwise} \end{cases}$$

Ignore floors and ceilings (and the base case)

Statement (concise form)

 $T(n) = 2T(n/2) + \Theta(n) \,.$

Next lecture: Will show $T(n) = \Theta(n \log n)$.

Statement

We guess that $T(n) := 2T(n/2) + \Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if n > 1.

Statement

We guess that $T(n) := 2T(n/2) + \Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if n > 1.

Proof by induction.

▶ base case: $T(2) \le 2c \log 2 = 2c$ for some constant c.

Statement

We guess that $T(n) := 2T(n/2) + \Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if n > 1.

Proof by induction.

▶ base case: $T(2) \le 2c \log 2 = 2c$ for some constant c.

• Assume
$$T(n-1) \leq c(n-1)\log(n-1)$$
, then

Statement

We guess that $T(n) := 2T(n/2) + \Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if n > 1.

Proof by induction.

▶ base case: $T(2) \le 2c \log 2 = 2c$ for some constant c.

• Assume
$$T(n-1) \leq c(n-1)\log(n-1)$$
, then

$$T(n) = 2T(n/2) + \Theta(n) \le 2c(n/2)\log(n/2) + cn$$
$$= cn(\log n - \log 2) + cn$$
$$= cn\log n.$$

Statement

We guess that $T(n) := 2T(n/2) + \Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if n > 1.

Proof by induction.

▶ base case: $T(2) \le 2c \log 2 = 2c$ for some constant c.

• Assume
$$T(n-1) \leq c(n-1)\log(n-1)$$
, then

$$T(n) = 2T(n/2) + \Theta(n) \le 2c(n/2)\log(n/2) + cn$$
$$= cn(\log n - \log 2) + cn$$
$$= cn\log n.$$

• the best/average/worst time complexity is $\Theta(n \log n)$

• space complexity is $\Theta(n)$

*Insertion sort

Algorithm 4: Insertion-sort (Pseudo-code)Input: An array A[1, 2, ..., n]Output: An sorted array A[1, 2, ..., n]1 for j = 2 : n do2 | insert A[j] into (sorted) A[1, 2, ..., j - 1];3 end

