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Target

▶ Recall that Bubble-sort runs in Θ(n2) time.

How to do it efficiently?

▶ Divide and conquer algorithm
▶ How to use recurrence relations to analyse runtimes of algorithms
▶ Runtime of Merge-sort is Θ(n log n)
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Divide and conquer

◦ Basic algorithm design paradigm
◦ consists of 3 steps:
▶ Divide: Divide the given problem into smaller subproblems
▶ Conquer: Recursively solve each subproblem
▶ Combine: Combine the solutions of these subproblems to get a solution for the original

problem
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Key idea in Merge-sort1

▶ divide: break the array into two parts
▶ recursive calls: recursively call Merge-sort to sort the two halves of the array
▶ merge: after the recursive call, the sub-problems are sorted, and then we merge them.

Algorithm 1: Merge-sort (Pseudo-code)
Input: An array A[1, 2, . . . , n]
Output: An sorted array D[1, 2, . . . , n]

1 Divide: split A[] into two parts B[] and C[];
2 Recursive calls: B[] = Merge-sort(B[]), C[] = Merge-sort(C[]);
3 Return Merge(B[], C[]);

1Check the implementation details https://www.geeksforgeeks.org/merge-sort/ if you’re interested in.
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Illustration of Merge-sort
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Runtime analysis of Merge-sort

Algorithm 2: MERGE-SORT

Input: An array A[1, 2, . . . , n]
Output: An sorted array D[1, 2, . . . , n]

1 MERGE-SORT(A[1, . . . , ⌊n/2⌋]) ;
2 MERGE-SORT(A[⌊n/2⌋+ 1, . . . , n]) ;
3 D[1, . . . , n]← Merge (A[1, . . . , ⌊n/2⌋], A[⌊n/2⌋+ 1, . . . , n]);
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Merge subroutine
▶ Input: sorted arrays B[1, 2, · · · , k] and C[1, 2, · · · , t]
▶ Output: Array D[1, 2, · · · , k + t] that contains the enties B and C in an increasing order.

Example
Input: B: [3, 7, 9, 10] ; C: [1,4,5]
Output: D: [1,3,4,5,7,9,10]

Case (B(i) ≤ C(j))
D(r)← B(i)
r ← r + 1
i← i + 1

Case (B(i) > C(j))
D(r)← C(j)
r ← r + 1
j ← j + 1
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Merge

Case (i > k)
D(r)← C(j)
r ← r + 1
j ← j + 1

Case (j > t)
D(r)← B(i)
r ← r + 1
i← i + 1
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Persudocode for Merge
Algorithm 3: MERGE

Input: sorted arrays B[1, 2, · · · , k] and C[1, 2, · · · , t]
Output: An sorted array D[1, 2, · · · , k + t] that contains the entries B and C.

1 Initialization: i = 1 and j = 1;
2 for r = 1 to (k + t) do
3 if i ≤ k and j ≤ t then
4 if B(i) ≤ C(j) then
5 D(r)← B(i), i← i + 1;
6 end
7 else
8 D(r)← C(j), j ← j + 1;
9 end

10 end
11 else if i > k, then D[r]← C[j], j ← j + 1;
12 else if j > t, then D[r]← B[i], i← i + 1;
13 end
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Runtime analysis of Merge-sort

Recurrence relation:

T (n) =
{

Θ(1) if n = 1
T (⌊n/2⌋) + T (n− ⌊n/2⌋) + Θ(n) otherwise.

Ignore floors and ceilings (and the base case)

Statement (concise form)

T (n) = 2T (n/2) + Θ(n) .

Next lecture: Will show T (n) = Θ(n log n).
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*Guess about time complexity

Statement
We guess that T (n) := 2T (n/2) + Θ(n) has the time complexity of O(n log n) if n > 1.

Proof by induction.
▶ base case: T (2) ≤ 2c log 2 = 2c for some constant c.
▶ Assume T (n− 1) ≤ c(n− 1) log(n− 1), then

T (n) = 2T (n/2) + Θ(n) ≤ 2c(n/2) log(n/2) + cn

= cn(log n− log 2) + cn

= cn log n .

□

▶ the best/average/worst time complexity is Θ(n log n)
▶ space complexity is Θ(n)
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*Insertion sort

Algorithm 4: Insertion-sort (Pseudo-code)
Input: An array A[1, 2, . . . , n]
Output: An sorted array A[1, 2, . . . , n]

1 for j = 2 : n do
2 insert A[j] into (sorted) A[1, 2, · · · , j − 1];
3 end
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