Discrete Mathematics and its application (CS147)

Lecture 5: Merge Sort

Fanghui Liu

Department of Computer Science, University of Warwick, UK

Target

- Recall that Bubble-sort runs in $\Theta\left(n^{2}\right)$ time.

How to do it efficiently?

Target

- Recall that Bubble-sort runs in $\Theta\left(n^{2}\right)$ time.

How to do it efficiently?

- Divide and conquer algorithm
- How to use recurrence relations to analyse runtimes of algorithms
- Runtime of Merge-sort is $\Theta(n \log n)$

Divide and conquer

- Basic algorithm design paradigm
- consists of 3 steps:
- Divide: Divide the given problem into smaller subproblems
- Conquer: Recursively solve each subproblem
- Combine: Combine the solutions of these subproblems to get a solution for the original problem

Key idea in Merge-sort ${ }^{1}$

- divide: break the array into two parts
- recursive calls: recursively call Merge-sort to sort the two halves of the array
- merge: after the recursive call, the sub-problems are sorted, and then we merge them.

[^0]
Key idea in Merge-sort ${ }^{1}$

- divide: break the array into two parts
- recursive calls: recursively call Merge-sort to sort the two halves of the array
- merge: after the recursive call, the sub-problems are sorted, and then we merge them.

Algorithm 1: Merge-sort (Pseudo-code)

Input: An array $A[1,2, \ldots, n]$
Output: An sorted array $D[1,2, \ldots, n]$
1 Divide: split $A[]$ into two parts $B[]$ and $C[]$;
2 Recursive calls: $B[]=$ Merge-sort($B[]), C[]=$ Merge-sort($C[]$);
3 Return Merge($B[, C[]$);

[^1]Illustration of Merge-sort

Runtime analysis of Merge-sort

```
Algorithm 2: MERGE-SORT
Input: An array \(A[1,2, \ldots, n]\)
Output: An sorted array \(D[1,2, \ldots, n]\)
1 MERGE-SORT \((A[1, \ldots,\lfloor n / 2\rfloor])\);
2 MERGE-SORT( \(A\lfloor n / 2\rfloor+1, \ldots, n\rfloor)\);
\(3 D[1, \ldots, n] \leftarrow\) Merge \((A[1, \ldots,\lfloor n / 2\rfloor], A[\lfloor n / 2\rfloor+1, \ldots, n])\);
```


Runtime analysis of Merge-sort

```
Algorithm 2: MERGE-SORT
Input: An array \(A[1,2, \ldots, n]\)
Output: An sorted array \(D[1,2, \ldots, n]\)
\({ }_{1} \operatorname{MERGE}-\operatorname{SORT}(A[1, \ldots,\lfloor n / 2\rfloor])\) \#runtime \(=T(\lfloor n / 2\rfloor)\);
2 MERGE-SORT( \(A\lfloor\lfloor n / 2\rfloor+1, \ldots, n\rfloor)\);
з \(D[1, \ldots, n] \leftarrow\) Merge \((A[1, \ldots,\lfloor n / 2\rfloor], A[\lfloor n / 2\rfloor+1, \ldots, n])\);
```


Runtime analysis of Merge-sort

```
Algorithm 2: MERGE-SORT
Input: An array \(A[1,2, \ldots, n]\)
Output: An sorted array \(D[1,2, \ldots, n]\)
\(1 \operatorname{MERGE}-\operatorname{SORT}(A[1, \ldots,\lfloor n / 2\rfloor])\) \#runtime \(=T(\lfloor n / 2\rfloor)\);
\(2 \operatorname{MERGE-SORT}(A[\lfloor n / 2\rfloor+1, \ldots, n])\) \#runtime \(=T(n-\lfloor n / 2\rfloor)\);
\(3 D[1, \ldots, n] \leftarrow\) Merge \((A[1, \ldots,\lfloor n / 2\rfloor], A[\lfloor n / 2\rfloor+1, \ldots, n])\);
```


Runtime analysis of Merge-sort

```
Algorithm 2: MERGE-SORT
Input: An array \(A[1,2, \ldots, n]\)
Output: An sorted array \(D[1,2, \ldots, n]\)
1 MERGE-SORT \((A[1, \ldots,\lfloor n / 2\rfloor])\) \#runtime \(=T(\lfloor n / 2\rfloor)\);
\(2 \operatorname{MERGE}-\operatorname{SORT}(A[\lfloor n / 2\rfloor+1, \ldots, n\rfloor)\) \#runtime \(=T(n-\lfloor n / 2\rfloor)\);
з \(D[1, \ldots, n] \leftarrow\) Merge \((A[1, \ldots,\lfloor n / 2\rfloor], A[\lfloor n / 2\rfloor+1, \ldots, n]) \#\) runtime \(=\Theta(n)\);
```


Runtime analysis of Merge-sort

Algorithm 2: MERGE-SORT

Input: An array $A[1,2, \ldots, n]$
Output: An sorted array $D[1,2, \ldots, n]$
$1 \operatorname{MERGE}-\operatorname{SORT}(A[1, \ldots,\lfloor n / 2\rfloor])$ \#runtime $=T(\lfloor n / 2\rfloor)$;
$2 \operatorname{MERGE}-\operatorname{SORT}(A[\lfloor n / 2\rfloor+1, \ldots, n\rfloor)$ \#runtime $=T(n-\lfloor n / 2\rfloor)$;
з $D[1, \ldots, n] \leftarrow$ Merge $(A[1, \ldots,\lfloor n / 2\rfloor], A[\lfloor n / 2\rfloor+1, \ldots, n])$ \#runtime $=\Theta(n)$;

Theorem

Merge takes $\Theta(n)$ time.

Runtime analysis of Merge-sort

```
Algorithm 2: MERGE-SORT
Input: An array \(A[1,2, \ldots, n]\)
Output: An sorted array \(D[1,2, \ldots, n]\)
1 MERGE-SORT \((A[1, \ldots,\lfloor n / 2\rfloor])\) \#runtime \(=T(\lfloor n / 2\rfloor)\);
\(2 \operatorname{MERGE}-\operatorname{SORT}(A[\lfloor n / 2\rfloor+1, \ldots, n\rfloor)\) \#runtime \(=T(n-\lfloor n / 2\rfloor)\);
з \(D[1, \ldots, n] \leftarrow\) Merge \((A[1, \ldots,\lfloor n / 2\rfloor], A[\lfloor n / 2\rfloor+1, \ldots, n]) \#\) runtime \(=\Theta(n)\);
```


Theorem

Merge takes $\Theta(n)$ time.
Recurrence relation: $T(n)=T(\lfloor n / 2\rfloor)+T(n-\lfloor n / 2\rfloor)+\Theta(n)$

Merge subroutine

- Input: sorted arrays $B[1,2, \cdots, k]$ and $C[1,2, \cdots, t]$
- Output: Array $D[1,2, \cdots, k+t]$ that contains the enties B and C in an increasing order.

Example

Input: B: $[3,7,9,10]$; C: $[1,4,5]$
Output: D: [1,3,4,5,7,9,10]

$$
\begin{aligned}
& \text { Case }(B(i) \leq C(j)) \\
& D(r) \leftarrow B(i) \\
& r \leftarrow r+1 \\
& i \leftarrow i+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Case }(B(i)>C(j)) \\
& D(r) \leftarrow C(j) \\
& r \leftarrow r+1 \\
& j \leftarrow j+1
\end{aligned}
$$

Merge

$$
\begin{aligned}
& \text { Case }(i>k) \\
& D(r) \leftarrow C(j) \\
& r \leftarrow r+1 \\
& j \leftarrow j+1
\end{aligned}
$$

Case $(j>t)$

$$
D(r) \leftarrow B(i)
$$

$$
r \leftarrow r+1
$$

$$
i \leftarrow i+1
$$

Persudocode for Merge

Algorithm 3: MERGE

Input: sorted arrays $B[1,2, \cdots, k]$ and $C[1,2, \cdots, t]$
Output: An sorted array $D[1,2, \cdots, k+t]$ that contains the entries B and C.
1 Initialization: $i=1$ and $j=1$;
2 for $r=1$ to $(k+t)$ do
3 if $i \leq k$ and $j \leq t$ then
$4 \quad$ if $B(i) \leq C(j)$ then
$D(r) \leftarrow B(i), i \leftarrow i+1 ;$
end
else
$D(r) \leftarrow C(j), j \leftarrow j+1 ;$
end
end
else if $i>k$, then $D[r] \leftarrow C[j], j \leftarrow j+1$;
else if $j>t$, then $D[r] \leftarrow B[i], i \leftarrow i+1$;
13 end

Runtime analysis of Merge-sort

Recurrence relation:

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1 \\
T(\lfloor n / 2\rfloor)+T(n-\lfloor n / 2\rfloor)+\Theta(n) & \text { otherwise } .
\end{array}\right.
$$

Ignore floors and ceilings (and the base case)

Statement (concise form)

$$
T(n)=2 T(n / 2)+\Theta(n) .
$$

Next lecture: Will show $T(n)=\Theta(n \log n)$.

*Guess about time complexity

Statement

We guess that $T(n):=2 T(n / 2)+\Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if $n>1$.

*Guess about time complexity

Statement

We guess that $T(n):=2 T(n / 2)+\Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if $n>1$.

Proof by induction.

- base case: $T(2) \leq 2 c \log 2=2 c$ for some constant c.

*Guess about time complexity

Statement

We guess that $T(n):=2 T(n / 2)+\Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if $n>1$.

Proof by induction.

- base case: $T(2) \leq 2 c \log 2=2 c$ for some constant c.
- Assume $T(n-1) \leq c(n-1) \log (n-1)$, then

*Guess about time complexity

Statement

We guess that $T(n):=2 T(n / 2)+\Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if $n>1$.

Proof by induction.

- base case: $T(2) \leq 2 c \log 2=2 c$ for some constant c.
- Assume $T(n-1) \leq c(n-1) \log (n-1)$, then

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \leq 2 c(n / 2) \log (n / 2)+c n \\
& =c n(\log n-\log 2)+c n \\
& =c n \log n .
\end{aligned}
$$

*Guess about time complexity

Statement

We guess that $T(n):=2 T(n / 2)+\Theta(n)$ has the time complexity of $\mathcal{O}(n \log n)$ if $n>1$.

Proof by induction.

- base case: $T(2) \leq 2 c \log 2=2 c$ for some constant c.
- Assume $T(n-1) \leq c(n-1) \log (n-1)$, then

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \leq 2 c(n / 2) \log (n / 2)+c n \\
& =c n(\log n-\log 2)+c n \\
& =c n \log n .
\end{aligned}
$$

- the best/average/worst time complexity is $\Theta(n \log n)$
- space complexity is $\Theta(n)$

*Insertion sort

```
Algorithm 4: Insertion-sort (Pseudo-code)
Input: An array \(A[1,2, \ldots, n]\)
Output: An sorted array \(A[1,2, \ldots, n]\)
for \(j=2: n\) do
    insert \(A[j]\) into (sorted) \(A[1,2, \cdots, j-1]\);
end
```


[^0]: ${ }^{1}$ Check the implementation details https://www.geeksforgeeks.org/merge-sort/ if you're interested in.

[^1]: ${ }^{1}$ Check the implementation details https://www.geeksforgeeks.org/merge-sort/ if you're interested in.

